L(s) = 1 | + 1.41i·5-s − 2.82i·7-s − 4·11-s + 2·13-s − 1.41i·17-s + 5.65i·19-s − 4·23-s + 2.99·25-s + 7.07i·29-s + 8.48i·31-s + 4.00·35-s + 8·37-s − 4.24i·41-s − 11.3i·43-s + 12·47-s + ⋯ |
L(s) = 1 | + 0.632i·5-s − 1.06i·7-s − 1.20·11-s + 0.554·13-s − 0.342i·17-s + 1.29i·19-s − 0.834·23-s + 0.599·25-s + 1.31i·29-s + 1.52i·31-s + 0.676·35-s + 1.31·37-s − 0.662i·41-s − 1.72i·43-s + 1.75·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.463246573\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.463246573\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 1.41iT - 5T^{2} \) |
| 7 | \( 1 + 2.82iT - 7T^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + 1.41iT - 17T^{2} \) |
| 19 | \( 1 - 5.65iT - 19T^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 - 7.07iT - 29T^{2} \) |
| 31 | \( 1 - 8.48iT - 31T^{2} \) |
| 37 | \( 1 - 8T + 37T^{2} \) |
| 41 | \( 1 + 4.24iT - 41T^{2} \) |
| 43 | \( 1 + 11.3iT - 43T^{2} \) |
| 47 | \( 1 - 12T + 47T^{2} \) |
| 53 | \( 1 - 12.7iT - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 8T + 61T^{2} \) |
| 67 | \( 1 - 5.65iT - 67T^{2} \) |
| 71 | \( 1 + 4T + 71T^{2} \) |
| 73 | \( 1 + 8T + 73T^{2} \) |
| 79 | \( 1 - 2.82iT - 79T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 - 15.5iT - 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.054391760774999360260587449735, −8.271091592999289937047171871556, −7.41735531102962315051526068878, −7.04329114412584343484852007096, −5.98180406864672585525847776756, −5.24159772156522462403328546607, −4.13883471506571946281117468663, −3.41797719529731272497047104348, −2.43209672067615054521389300493, −1.06425319391936915613189201724,
0.58277542301415223049391014972, 2.18220387070786472842303972083, 2.81830461708124090825308990807, 4.19799100720704853230427825494, 4.92407014084292868688175349228, 5.80247300573540949560544946006, 6.28208328102252349530996046477, 7.61293359811443231651344440672, 8.155284680866821212411763501806, 8.854265566896114308633366959102