Properties

Label 2-48e2-48.11-c1-0-3
Degree $2$
Conductor $2304$
Sign $-0.884 - 0.465i$
Analytic cond. $18.3975$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.517 + 0.517i)5-s − 1.41·7-s + (2.73 + 2.73i)11-s + (−1.73 + 1.73i)13-s − 0.378i·17-s + (0.378 + 0.378i)19-s − 3.46i·23-s + 4.46i·25-s + (−4.76 − 4.76i)29-s + 0.656i·31-s + (0.732 − 0.732i)35-s + (4.46 + 4.46i)37-s − 10.1·41-s + (6.31 − 6.31i)43-s − 10.3·47-s + ⋯
L(s)  = 1  + (−0.231 + 0.231i)5-s − 0.534·7-s + (0.823 + 0.823i)11-s + (−0.480 + 0.480i)13-s − 0.0919i·17-s + (0.0869 + 0.0869i)19-s − 0.722i·23-s + 0.892i·25-s + (−0.883 − 0.883i)29-s + 0.117i·31-s + (0.123 − 0.123i)35-s + (0.733 + 0.733i)37-s − 1.58·41-s + (0.962 − 0.962i)43-s − 1.51·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.884 - 0.465i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.884 - 0.465i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $-0.884 - 0.465i$
Analytic conductor: \(18.3975\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2304} (575, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :1/2),\ -0.884 - 0.465i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6292744066\)
\(L(\frac12)\) \(\approx\) \(0.6292744066\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (0.517 - 0.517i)T - 5iT^{2} \)
7 \( 1 + 1.41T + 7T^{2} \)
11 \( 1 + (-2.73 - 2.73i)T + 11iT^{2} \)
13 \( 1 + (1.73 - 1.73i)T - 13iT^{2} \)
17 \( 1 + 0.378iT - 17T^{2} \)
19 \( 1 + (-0.378 - 0.378i)T + 19iT^{2} \)
23 \( 1 + 3.46iT - 23T^{2} \)
29 \( 1 + (4.76 + 4.76i)T + 29iT^{2} \)
31 \( 1 - 0.656iT - 31T^{2} \)
37 \( 1 + (-4.46 - 4.46i)T + 37iT^{2} \)
41 \( 1 + 10.1T + 41T^{2} \)
43 \( 1 + (-6.31 + 6.31i)T - 43iT^{2} \)
47 \( 1 + 10.3T + 47T^{2} \)
53 \( 1 + (4.00 - 4.00i)T - 53iT^{2} \)
59 \( 1 + (-4.92 - 4.92i)T + 59iT^{2} \)
61 \( 1 + (3 - 3i)T - 61iT^{2} \)
67 \( 1 + (-1.03 - 1.03i)T + 67iT^{2} \)
71 \( 1 + 14iT - 71T^{2} \)
73 \( 1 - 8.92iT - 73T^{2} \)
79 \( 1 - 11.9iT - 79T^{2} \)
83 \( 1 + (7.26 - 7.26i)T - 83iT^{2} \)
89 \( 1 + 13.2T + 89T^{2} \)
97 \( 1 - 2.39T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.604080862383583134921183367213, −8.603878613899114838513122452513, −7.69386680106043844543957921936, −6.91606811661523084025781578247, −6.46080866506200006372944905177, −5.36749977618084969723722601126, −4.42351641922495016069318373094, −3.69562016608128407554883561247, −2.64164727623675172840482702375, −1.53410337432609390943695285265, 0.21331046711891688065956724056, 1.57455437724618792499478798722, 2.99401130541178182733400973168, 3.64844705079875142732115220974, 4.65485810074121922988096468052, 5.59307229474604362273031334417, 6.33307738483322999405816153656, 7.10523842458888787623099753976, 8.004989536395056544161532757979, 8.643695980955433512122659216453

Graph of the $Z$-function along the critical line