L(s) = 1 | + (−0.517 + 0.517i)5-s − 1.41·7-s + (2.73 + 2.73i)11-s + (−1.73 + 1.73i)13-s − 0.378i·17-s + (0.378 + 0.378i)19-s − 3.46i·23-s + 4.46i·25-s + (−4.76 − 4.76i)29-s + 0.656i·31-s + (0.732 − 0.732i)35-s + (4.46 + 4.46i)37-s − 10.1·41-s + (6.31 − 6.31i)43-s − 10.3·47-s + ⋯ |
L(s) = 1 | + (−0.231 + 0.231i)5-s − 0.534·7-s + (0.823 + 0.823i)11-s + (−0.480 + 0.480i)13-s − 0.0919i·17-s + (0.0869 + 0.0869i)19-s − 0.722i·23-s + 0.892i·25-s + (−0.883 − 0.883i)29-s + 0.117i·31-s + (0.123 − 0.123i)35-s + (0.733 + 0.733i)37-s − 1.58·41-s + (0.962 − 0.962i)43-s − 1.51·47-s + ⋯ |
Λ(s)=(=(2304s/2ΓC(s)L(s)(−0.884−0.465i)Λ(2−s)
Λ(s)=(=(2304s/2ΓC(s+1/2)L(s)(−0.884−0.465i)Λ(1−s)
Degree: |
2 |
Conductor: |
2304
= 28⋅32
|
Sign: |
−0.884−0.465i
|
Analytic conductor: |
18.3975 |
Root analytic conductor: |
4.28923 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2304(575,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2304, ( :1/2), −0.884−0.465i)
|
Particular Values
L(1) |
≈ |
0.6292744066 |
L(21) |
≈ |
0.6292744066 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(0.517−0.517i)T−5iT2 |
| 7 | 1+1.41T+7T2 |
| 11 | 1+(−2.73−2.73i)T+11iT2 |
| 13 | 1+(1.73−1.73i)T−13iT2 |
| 17 | 1+0.378iT−17T2 |
| 19 | 1+(−0.378−0.378i)T+19iT2 |
| 23 | 1+3.46iT−23T2 |
| 29 | 1+(4.76+4.76i)T+29iT2 |
| 31 | 1−0.656iT−31T2 |
| 37 | 1+(−4.46−4.46i)T+37iT2 |
| 41 | 1+10.1T+41T2 |
| 43 | 1+(−6.31+6.31i)T−43iT2 |
| 47 | 1+10.3T+47T2 |
| 53 | 1+(4.00−4.00i)T−53iT2 |
| 59 | 1+(−4.92−4.92i)T+59iT2 |
| 61 | 1+(3−3i)T−61iT2 |
| 67 | 1+(−1.03−1.03i)T+67iT2 |
| 71 | 1+14iT−71T2 |
| 73 | 1−8.92iT−73T2 |
| 79 | 1−11.9iT−79T2 |
| 83 | 1+(7.26−7.26i)T−83iT2 |
| 89 | 1+13.2T+89T2 |
| 97 | 1−2.39T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.604080862383583134921183367213, −8.603878613899114838513122452513, −7.69386680106043844543957921936, −6.91606811661523084025781578247, −6.46080866506200006372944905177, −5.36749977618084969723722601126, −4.42351641922495016069318373094, −3.69562016608128407554883561247, −2.64164727623675172840482702375, −1.53410337432609390943695285265,
0.21331046711891688065956724056, 1.57455437724618792499478798722, 2.99401130541178182733400973168, 3.64844705079875142732115220974, 4.65485810074121922988096468052, 5.59307229474604362273031334417, 6.33307738483322999405816153656, 7.10523842458888787623099753976, 8.004989536395056544161532757979, 8.643695980955433512122659216453