L(s) = 1 | + (−0.517 + 0.517i)5-s − 1.41·7-s + (2.73 + 2.73i)11-s + (−1.73 + 1.73i)13-s − 0.378i·17-s + (0.378 + 0.378i)19-s − 3.46i·23-s + 4.46i·25-s + (−4.76 − 4.76i)29-s + 0.656i·31-s + (0.732 − 0.732i)35-s + (4.46 + 4.46i)37-s − 10.1·41-s + (6.31 − 6.31i)43-s − 10.3·47-s + ⋯ |
L(s) = 1 | + (−0.231 + 0.231i)5-s − 0.534·7-s + (0.823 + 0.823i)11-s + (−0.480 + 0.480i)13-s − 0.0919i·17-s + (0.0869 + 0.0869i)19-s − 0.722i·23-s + 0.892i·25-s + (−0.883 − 0.883i)29-s + 0.117i·31-s + (0.123 − 0.123i)35-s + (0.733 + 0.733i)37-s − 1.58·41-s + (0.962 − 0.962i)43-s − 1.51·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.884 - 0.465i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.884 - 0.465i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6292744066\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6292744066\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (0.517 - 0.517i)T - 5iT^{2} \) |
| 7 | \( 1 + 1.41T + 7T^{2} \) |
| 11 | \( 1 + (-2.73 - 2.73i)T + 11iT^{2} \) |
| 13 | \( 1 + (1.73 - 1.73i)T - 13iT^{2} \) |
| 17 | \( 1 + 0.378iT - 17T^{2} \) |
| 19 | \( 1 + (-0.378 - 0.378i)T + 19iT^{2} \) |
| 23 | \( 1 + 3.46iT - 23T^{2} \) |
| 29 | \( 1 + (4.76 + 4.76i)T + 29iT^{2} \) |
| 31 | \( 1 - 0.656iT - 31T^{2} \) |
| 37 | \( 1 + (-4.46 - 4.46i)T + 37iT^{2} \) |
| 41 | \( 1 + 10.1T + 41T^{2} \) |
| 43 | \( 1 + (-6.31 + 6.31i)T - 43iT^{2} \) |
| 47 | \( 1 + 10.3T + 47T^{2} \) |
| 53 | \( 1 + (4.00 - 4.00i)T - 53iT^{2} \) |
| 59 | \( 1 + (-4.92 - 4.92i)T + 59iT^{2} \) |
| 61 | \( 1 + (3 - 3i)T - 61iT^{2} \) |
| 67 | \( 1 + (-1.03 - 1.03i)T + 67iT^{2} \) |
| 71 | \( 1 + 14iT - 71T^{2} \) |
| 73 | \( 1 - 8.92iT - 73T^{2} \) |
| 79 | \( 1 - 11.9iT - 79T^{2} \) |
| 83 | \( 1 + (7.26 - 7.26i)T - 83iT^{2} \) |
| 89 | \( 1 + 13.2T + 89T^{2} \) |
| 97 | \( 1 - 2.39T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.604080862383583134921183367213, −8.603878613899114838513122452513, −7.69386680106043844543957921936, −6.91606811661523084025781578247, −6.46080866506200006372944905177, −5.36749977618084969723722601126, −4.42351641922495016069318373094, −3.69562016608128407554883561247, −2.64164727623675172840482702375, −1.53410337432609390943695285265,
0.21331046711891688065956724056, 1.57455437724618792499478798722, 2.99401130541178182733400973168, 3.64844705079875142732115220974, 4.65485810074121922988096468052, 5.59307229474604362273031334417, 6.33307738483322999405816153656, 7.10523842458888787623099753976, 8.004989536395056544161532757979, 8.643695980955433512122659216453