L(s) = 1 | − 1.23i·3-s − 2i·5-s − 1.23i·7-s + 1.47·9-s − 1.23i·11-s + 4.47·13-s − 2.47·15-s + 6.47·19-s − 1.52·21-s − 1.23i·23-s + 25-s − 5.52i·27-s − 2i·29-s − 1.23i·31-s − 1.52·33-s + ⋯ |
L(s) = 1 | − 0.713i·3-s − 0.894i·5-s − 0.467i·7-s + 0.490·9-s − 0.372i·11-s + 1.24·13-s − 0.638·15-s + 1.48·19-s − 0.333·21-s − 0.257i·23-s + 0.200·25-s − 1.06i·27-s − 0.371i·29-s − 0.222i·31-s − 0.265·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.242 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.242 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.156973500\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.156973500\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + 1.23iT - 3T^{2} \) |
| 5 | \( 1 + 2iT - 5T^{2} \) |
| 7 | \( 1 + 1.23iT - 7T^{2} \) |
| 11 | \( 1 + 1.23iT - 11T^{2} \) |
| 13 | \( 1 - 4.47T + 13T^{2} \) |
| 19 | \( 1 - 6.47T + 19T^{2} \) |
| 23 | \( 1 + 1.23iT - 23T^{2} \) |
| 29 | \( 1 + 2iT - 29T^{2} \) |
| 31 | \( 1 + 1.23iT - 31T^{2} \) |
| 37 | \( 1 - 10.9iT - 37T^{2} \) |
| 41 | \( 1 - 2iT - 41T^{2} \) |
| 43 | \( 1 - 1.52T + 43T^{2} \) |
| 47 | \( 1 - 12.9T + 47T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 + 14.4T + 59T^{2} \) |
| 61 | \( 1 - 6.94iT - 61T^{2} \) |
| 67 | \( 1 + 12T + 67T^{2} \) |
| 71 | \( 1 + 9.23iT - 71T^{2} \) |
| 73 | \( 1 + 14.9iT - 73T^{2} \) |
| 79 | \( 1 - 11.7iT - 79T^{2} \) |
| 83 | \( 1 + 1.52T + 83T^{2} \) |
| 89 | \( 1 + 7.52T + 89T^{2} \) |
| 97 | \( 1 + 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.733121376569298742040037696240, −7.929199226213651357722233009250, −7.36739930185601829855464292501, −6.44408920293976260199534288345, −5.75085289679847016066129862572, −4.74186876208367793484116591214, −3.97330543424891256394238101206, −2.90676796958382338734741811756, −1.38829159898304098553677403649, −0.923380169337622076423017427992,
1.36033899085931100334248189534, 2.69202596656722460830980195719, 3.54540783666180772382983142872, 4.24896984435959718763674588012, 5.37072696459483372389909542146, 5.96244761194600279784179001320, 7.10606131460798950382883474901, 7.43052138478424906179446927523, 8.687818083052977727114978119512, 9.266189411236188945847475095568