L(s) = 1 | + (1.75 + 0.846i)3-s + (0.222 + 0.974i)5-s + (−0.781 − 0.376i)7-s + (1.74 + 2.19i)9-s + (−0.433 + 1.90i)15-s + (−1.05 − 1.32i)21-s + (0.433 − 1.90i)23-s + (−0.900 + 0.433i)25-s + (0.781 + 3.42i)27-s + (−0.900 − 0.433i)29-s + (0.193 − 0.846i)35-s − 1.24·41-s + (0.347 − 1.52i)43-s + (−1.74 + 2.19i)45-s + (−0.541 + 0.678i)47-s + ⋯ |
L(s) = 1 | + (1.75 + 0.846i)3-s + (0.222 + 0.974i)5-s + (−0.781 − 0.376i)7-s + (1.74 + 2.19i)9-s + (−0.433 + 1.90i)15-s + (−1.05 − 1.32i)21-s + (0.433 − 1.90i)23-s + (−0.900 + 0.433i)25-s + (0.781 + 3.42i)27-s + (−0.900 − 0.433i)29-s + (0.193 − 0.846i)35-s − 1.24·41-s + (0.347 − 1.52i)43-s + (−1.74 + 2.19i)45-s + (−0.541 + 0.678i)47-s + ⋯ |
Λ(s)=(=(2320s/2ΓC(s)L(s)(0.226−0.974i)Λ(1−s)
Λ(s)=(=(2320s/2ΓC(s)L(s)(0.226−0.974i)Λ(1−s)
Degree: |
2 |
Conductor: |
2320
= 24⋅5⋅29
|
Sign: |
0.226−0.974i
|
Analytic conductor: |
1.15783 |
Root analytic conductor: |
1.07602 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2320(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2320, ( :0), 0.226−0.974i)
|
Particular Values
L(21) |
≈ |
2.078755400 |
L(21) |
≈ |
2.078755400 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.222−0.974i)T |
| 29 | 1+(0.900+0.433i)T |
good | 3 | 1+(−1.75−0.846i)T+(0.623+0.781i)T2 |
| 7 | 1+(0.781+0.376i)T+(0.623+0.781i)T2 |
| 11 | 1+(0.222+0.974i)T2 |
| 13 | 1+(0.222+0.974i)T2 |
| 17 | 1−T2 |
| 19 | 1+(−0.623+0.781i)T2 |
| 23 | 1+(−0.433+1.90i)T+(−0.900−0.433i)T2 |
| 31 | 1+(0.900−0.433i)T2 |
| 37 | 1+(0.222−0.974i)T2 |
| 41 | 1+1.24T+T2 |
| 43 | 1+(−0.347+1.52i)T+(−0.900−0.433i)T2 |
| 47 | 1+(0.541−0.678i)T+(−0.222−0.974i)T2 |
| 53 | 1+(0.900−0.433i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−1.80−0.867i)T+(0.623+0.781i)T2 |
| 67 | 1+(−0.222+0.974i)T2 |
| 71 | 1+(0.222+0.974i)T2 |
| 73 | 1+(0.900+0.433i)T2 |
| 79 | 1+(0.222−0.974i)T2 |
| 83 | 1+(−1.40+0.678i)T+(0.623−0.781i)T2 |
| 89 | 1+(−0.400−1.75i)T+(−0.900+0.433i)T2 |
| 97 | 1+(−0.623+0.781i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.372635033935129906098830092188, −8.678128259870180868608651082504, −7.949046066587398154429994363466, −7.10929390648731498569757676176, −6.55434932761866322294752457794, −5.22063528714409003568273290602, −4.12827093668923632345646450706, −3.55720613720863023948916015080, −2.77758256141876552961259815313, −2.09442953980796103574932144286,
1.30945175201873503891558579993, 2.12582616272476739933106778804, 3.22576818148475464953404473980, 3.75547003643967298911903765274, 5.02680427488514544905490608952, 6.06271479623477986271853995061, 6.91414942428982925845908993551, 7.66364453829863136401297818461, 8.309404182603510500381358863611, 9.002641016278793909118048018871