Properties

Label 2-2320-29.28-c1-0-26
Degree $2$
Conductor $2320$
Sign $0.964 + 0.262i$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·3-s − 5-s + 2.73·7-s + 0.999·9-s − 0.378i·11-s + 5.46·13-s + 1.41i·15-s + 3.48i·17-s + 4.24i·19-s − 3.86i·21-s − 2.19·23-s + 25-s − 5.65i·27-s + (5.19 + 1.41i)29-s + 4.24i·31-s + ⋯
L(s)  = 1  − 0.816i·3-s − 0.447·5-s + 1.03·7-s + 0.333·9-s − 0.114i·11-s + 1.51·13-s + 0.365i·15-s + 0.845i·17-s + 0.973i·19-s − 0.843i·21-s − 0.457·23-s + 0.200·25-s − 1.08i·27-s + (0.964 + 0.262i)29-s + 0.762i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.262i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.262i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $0.964 + 0.262i$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2320} (1681, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ 0.964 + 0.262i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.140465880\)
\(L(\frac12)\) \(\approx\) \(2.140465880\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 + (-5.19 - 1.41i)T \)
good3 \( 1 + 1.41iT - 3T^{2} \)
7 \( 1 - 2.73T + 7T^{2} \)
11 \( 1 + 0.378iT - 11T^{2} \)
13 \( 1 - 5.46T + 13T^{2} \)
17 \( 1 - 3.48iT - 17T^{2} \)
19 \( 1 - 4.24iT - 19T^{2} \)
23 \( 1 + 2.19T + 23T^{2} \)
31 \( 1 - 4.24iT - 31T^{2} \)
37 \( 1 - 4.24iT - 37T^{2} \)
41 \( 1 - 5.93iT - 41T^{2} \)
43 \( 1 - 4.24iT - 43T^{2} \)
47 \( 1 - 11.2iT - 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 + 11.5iT - 61T^{2} \)
67 \( 1 - 13.1T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 15.8iT - 73T^{2} \)
79 \( 1 + 1.13iT - 79T^{2} \)
83 \( 1 - 8.19T + 83T^{2} \)
89 \( 1 - 7.72iT - 89T^{2} \)
97 \( 1 - 7.34iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.565831099601683828653970150659, −8.087375977248019769396706986620, −7.71473948602675444592189910973, −6.46360284952031574797069357621, −6.18529818981322819974045782285, −4.90955088820831404944897835855, −4.13162452186157690293185474822, −3.21001717308991377220075045661, −1.69938768256210903696223887381, −1.21745934827391173854219011712, 0.907199724828692192729413359244, 2.23263135057711408546083913699, 3.54712748094132065713288754443, 4.21395927081618065266961046696, 4.89365679511686793205808391214, 5.69633403724829802711995551895, 6.83907882159094368529177608496, 7.51108649733405599930184536904, 8.479970438063116086206922405722, 8.875993741515632467892366075239

Graph of the $Z$-function along the critical line