L(s) = 1 | − 1.41i·3-s − 5-s + 2.73·7-s + 0.999·9-s − 0.378i·11-s + 5.46·13-s + 1.41i·15-s + 3.48i·17-s + 4.24i·19-s − 3.86i·21-s − 2.19·23-s + 25-s − 5.65i·27-s + (5.19 + 1.41i)29-s + 4.24i·31-s + ⋯ |
L(s) = 1 | − 0.816i·3-s − 0.447·5-s + 1.03·7-s + 0.333·9-s − 0.114i·11-s + 1.51·13-s + 0.365i·15-s + 0.845i·17-s + 0.973i·19-s − 0.843i·21-s − 0.457·23-s + 0.200·25-s − 1.08i·27-s + (0.964 + 0.262i)29-s + 0.762i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.262i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.262i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.140465880\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.140465880\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 29 | \( 1 + (-5.19 - 1.41i)T \) |
good | 3 | \( 1 + 1.41iT - 3T^{2} \) |
| 7 | \( 1 - 2.73T + 7T^{2} \) |
| 11 | \( 1 + 0.378iT - 11T^{2} \) |
| 13 | \( 1 - 5.46T + 13T^{2} \) |
| 17 | \( 1 - 3.48iT - 17T^{2} \) |
| 19 | \( 1 - 4.24iT - 19T^{2} \) |
| 23 | \( 1 + 2.19T + 23T^{2} \) |
| 31 | \( 1 - 4.24iT - 31T^{2} \) |
| 37 | \( 1 - 4.24iT - 37T^{2} \) |
| 41 | \( 1 - 5.93iT - 41T^{2} \) |
| 43 | \( 1 - 4.24iT - 43T^{2} \) |
| 47 | \( 1 - 11.2iT - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 + 11.5iT - 61T^{2} \) |
| 67 | \( 1 - 13.1T + 67T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + 15.8iT - 73T^{2} \) |
| 79 | \( 1 + 1.13iT - 79T^{2} \) |
| 83 | \( 1 - 8.19T + 83T^{2} \) |
| 89 | \( 1 - 7.72iT - 89T^{2} \) |
| 97 | \( 1 - 7.34iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.565831099601683828653970150659, −8.087375977248019769396706986620, −7.71473948602675444592189910973, −6.46360284952031574797069357621, −6.18529818981322819974045782285, −4.90955088820831404944897835855, −4.13162452186157690293185474822, −3.21001717308991377220075045661, −1.69938768256210903696223887381, −1.21745934827391173854219011712,
0.907199724828692192729413359244, 2.23263135057711408546083913699, 3.54712748094132065713288754443, 4.21395927081618065266961046696, 4.89365679511686793205808391214, 5.69633403724829802711995551895, 6.83907882159094368529177608496, 7.51108649733405599930184536904, 8.479970438063116086206922405722, 8.875993741515632467892366075239