L(s) = 1 | − 1.41i·3-s − 5-s + 2.73·7-s + 0.999·9-s − 0.378i·11-s + 5.46·13-s + 1.41i·15-s + 3.48i·17-s + 4.24i·19-s − 3.86i·21-s − 2.19·23-s + 25-s − 5.65i·27-s + (5.19 + 1.41i)29-s + 4.24i·31-s + ⋯ |
L(s) = 1 | − 0.816i·3-s − 0.447·5-s + 1.03·7-s + 0.333·9-s − 0.114i·11-s + 1.51·13-s + 0.365i·15-s + 0.845i·17-s + 0.973i·19-s − 0.843i·21-s − 0.457·23-s + 0.200·25-s − 1.08i·27-s + (0.964 + 0.262i)29-s + 0.762i·31-s + ⋯ |
Λ(s)=(=(2320s/2ΓC(s)L(s)(0.964+0.262i)Λ(2−s)
Λ(s)=(=(2320s/2ΓC(s+1/2)L(s)(0.964+0.262i)Λ(1−s)
Degree: |
2 |
Conductor: |
2320
= 24⋅5⋅29
|
Sign: |
0.964+0.262i
|
Analytic conductor: |
18.5252 |
Root analytic conductor: |
4.30410 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2320(1681,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2320, ( :1/2), 0.964+0.262i)
|
Particular Values
L(1) |
≈ |
2.140465880 |
L(21) |
≈ |
2.140465880 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 29 | 1+(−5.19−1.41i)T |
good | 3 | 1+1.41iT−3T2 |
| 7 | 1−2.73T+7T2 |
| 11 | 1+0.378iT−11T2 |
| 13 | 1−5.46T+13T2 |
| 17 | 1−3.48iT−17T2 |
| 19 | 1−4.24iT−19T2 |
| 23 | 1+2.19T+23T2 |
| 31 | 1−4.24iT−31T2 |
| 37 | 1−4.24iT−37T2 |
| 41 | 1−5.93iT−41T2 |
| 43 | 1−4.24iT−43T2 |
| 47 | 1−11.2iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1+11.5iT−61T2 |
| 67 | 1−13.1T+67T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+15.8iT−73T2 |
| 79 | 1+1.13iT−79T2 |
| 83 | 1−8.19T+83T2 |
| 89 | 1−7.72iT−89T2 |
| 97 | 1−7.34iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.565831099601683828653970150659, −8.087375977248019769396706986620, −7.71473948602675444592189910973, −6.46360284952031574797069357621, −6.18529818981322819974045782285, −4.90955088820831404944897835855, −4.13162452186157690293185474822, −3.21001717308991377220075045661, −1.69938768256210903696223887381, −1.21745934827391173854219011712,
0.907199724828692192729413359244, 2.23263135057711408546083913699, 3.54712748094132065713288754443, 4.21395927081618065266961046696, 4.89365679511686793205808391214, 5.69633403724829802711995551895, 6.83907882159094368529177608496, 7.51108649733405599930184536904, 8.479970438063116086206922405722, 8.875993741515632467892366075239