L(s) = 1 | + 1.41i·3-s − 5-s − 0.732·7-s + 0.999·9-s + 5.27i·11-s − 1.46·13-s − 1.41i·15-s + 6.31i·17-s − 4.24i·19-s − 1.03i·21-s + 8.19·23-s + 25-s + 5.65i·27-s + (−5.19 − 1.41i)29-s − 4.24i·31-s + ⋯ |
L(s) = 1 | + 0.816i·3-s − 0.447·5-s − 0.276·7-s + 0.333·9-s + 1.59i·11-s − 0.406·13-s − 0.365i·15-s + 1.53i·17-s − 0.973i·19-s − 0.225i·21-s + 1.70·23-s + 0.200·25-s + 1.08i·27-s + (−0.964 − 0.262i)29-s − 0.762i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 - 0.262i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 - 0.262i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.074024577\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.074024577\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 29 | \( 1 + (5.19 + 1.41i)T \) |
good | 3 | \( 1 - 1.41iT - 3T^{2} \) |
| 7 | \( 1 + 0.732T + 7T^{2} \) |
| 11 | \( 1 - 5.27iT - 11T^{2} \) |
| 13 | \( 1 + 1.46T + 13T^{2} \) |
| 17 | \( 1 - 6.31iT - 17T^{2} \) |
| 19 | \( 1 + 4.24iT - 19T^{2} \) |
| 23 | \( 1 - 8.19T + 23T^{2} \) |
| 31 | \( 1 + 4.24iT - 31T^{2} \) |
| 37 | \( 1 + 4.24iT - 37T^{2} \) |
| 41 | \( 1 - 8.76iT - 41T^{2} \) |
| 43 | \( 1 + 4.24iT - 43T^{2} \) |
| 47 | \( 1 - 8.38iT - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 + 3.10iT - 61T^{2} \) |
| 67 | \( 1 + 11.1T + 67T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 1.13iT - 73T^{2} \) |
| 79 | \( 1 - 15.8iT - 79T^{2} \) |
| 83 | \( 1 + 2.19T + 83T^{2} \) |
| 89 | \( 1 - 2.07iT - 89T^{2} \) |
| 97 | \( 1 - 7.34iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.517524711980359789882062516417, −8.782473678187901703555732287381, −7.64573223523625302878571476942, −7.18078314200113158957783414528, −6.30836780544580400354980643314, −5.10249504617179500395950285419, −4.50268838607527986336042497483, −3.88093688066149253548001911777, −2.79258800791675223531111938517, −1.55886991044880893217265483730,
0.38112875905549391131519117578, 1.44546909418293370403047546921, 2.87627109242000962103174978965, 3.47735647062810129913086335722, 4.72728287401429930062566816235, 5.55728646963653702755526927768, 6.47326237654290066674501015379, 7.20795023212027237653289138414, 7.67529897030406957215542048350, 8.646326429080559545066155399714