L(s) = 1 | + 1.41i·3-s − 5-s − 0.732·7-s + 0.999·9-s + 5.27i·11-s − 1.46·13-s − 1.41i·15-s + 6.31i·17-s − 4.24i·19-s − 1.03i·21-s + 8.19·23-s + 25-s + 5.65i·27-s + (−5.19 − 1.41i)29-s − 4.24i·31-s + ⋯ |
L(s) = 1 | + 0.816i·3-s − 0.447·5-s − 0.276·7-s + 0.333·9-s + 1.59i·11-s − 0.406·13-s − 0.365i·15-s + 1.53i·17-s − 0.973i·19-s − 0.225i·21-s + 1.70·23-s + 0.200·25-s + 1.08i·27-s + (−0.964 − 0.262i)29-s − 0.762i·31-s + ⋯ |
Λ(s)=(=(2320s/2ΓC(s)L(s)(−0.964−0.262i)Λ(2−s)
Λ(s)=(=(2320s/2ΓC(s+1/2)L(s)(−0.964−0.262i)Λ(1−s)
Degree: |
2 |
Conductor: |
2320
= 24⋅5⋅29
|
Sign: |
−0.964−0.262i
|
Analytic conductor: |
18.5252 |
Root analytic conductor: |
4.30410 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2320(1681,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2320, ( :1/2), −0.964−0.262i)
|
Particular Values
L(1) |
≈ |
1.074024577 |
L(21) |
≈ |
1.074024577 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 29 | 1+(5.19+1.41i)T |
good | 3 | 1−1.41iT−3T2 |
| 7 | 1+0.732T+7T2 |
| 11 | 1−5.27iT−11T2 |
| 13 | 1+1.46T+13T2 |
| 17 | 1−6.31iT−17T2 |
| 19 | 1+4.24iT−19T2 |
| 23 | 1−8.19T+23T2 |
| 31 | 1+4.24iT−31T2 |
| 37 | 1+4.24iT−37T2 |
| 41 | 1−8.76iT−41T2 |
| 43 | 1+4.24iT−43T2 |
| 47 | 1−8.38iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1+3.10iT−61T2 |
| 67 | 1+11.1T+67T2 |
| 71 | 1+6T+71T2 |
| 73 | 1−1.13iT−73T2 |
| 79 | 1−15.8iT−79T2 |
| 83 | 1+2.19T+83T2 |
| 89 | 1−2.07iT−89T2 |
| 97 | 1−7.34iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.517524711980359789882062516417, −8.782473678187901703555732287381, −7.64573223523625302878571476942, −7.18078314200113158957783414528, −6.30836780544580400354980643314, −5.10249504617179500395950285419, −4.50268838607527986336042497483, −3.88093688066149253548001911777, −2.79258800791675223531111938517, −1.55886991044880893217265483730,
0.38112875905549391131519117578, 1.44546909418293370403047546921, 2.87627109242000962103174978965, 3.47735647062810129913086335722, 4.72728287401429930062566816235, 5.55728646963653702755526927768, 6.47326237654290066674501015379, 7.20795023212027237653289138414, 7.67529897030406957215542048350, 8.646326429080559545066155399714