Properties

Label 2-2320-29.28-c1-0-9
Degree $2$
Conductor $2320$
Sign $-0.964 - 0.262i$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41i·3-s − 5-s − 0.732·7-s + 0.999·9-s + 5.27i·11-s − 1.46·13-s − 1.41i·15-s + 6.31i·17-s − 4.24i·19-s − 1.03i·21-s + 8.19·23-s + 25-s + 5.65i·27-s + (−5.19 − 1.41i)29-s − 4.24i·31-s + ⋯
L(s)  = 1  + 0.816i·3-s − 0.447·5-s − 0.276·7-s + 0.333·9-s + 1.59i·11-s − 0.406·13-s − 0.365i·15-s + 1.53i·17-s − 0.973i·19-s − 0.225i·21-s + 1.70·23-s + 0.200·25-s + 1.08i·27-s + (−0.964 − 0.262i)29-s − 0.762i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 - 0.262i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 - 0.262i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $-0.964 - 0.262i$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2320} (1681, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ -0.964 - 0.262i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.074024577\)
\(L(\frac12)\) \(\approx\) \(1.074024577\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 + (5.19 + 1.41i)T \)
good3 \( 1 - 1.41iT - 3T^{2} \)
7 \( 1 + 0.732T + 7T^{2} \)
11 \( 1 - 5.27iT - 11T^{2} \)
13 \( 1 + 1.46T + 13T^{2} \)
17 \( 1 - 6.31iT - 17T^{2} \)
19 \( 1 + 4.24iT - 19T^{2} \)
23 \( 1 - 8.19T + 23T^{2} \)
31 \( 1 + 4.24iT - 31T^{2} \)
37 \( 1 + 4.24iT - 37T^{2} \)
41 \( 1 - 8.76iT - 41T^{2} \)
43 \( 1 + 4.24iT - 43T^{2} \)
47 \( 1 - 8.38iT - 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 + 3.10iT - 61T^{2} \)
67 \( 1 + 11.1T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 - 1.13iT - 73T^{2} \)
79 \( 1 - 15.8iT - 79T^{2} \)
83 \( 1 + 2.19T + 83T^{2} \)
89 \( 1 - 2.07iT - 89T^{2} \)
97 \( 1 - 7.34iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.517524711980359789882062516417, −8.782473678187901703555732287381, −7.64573223523625302878571476942, −7.18078314200113158957783414528, −6.30836780544580400354980643314, −5.10249504617179500395950285419, −4.50268838607527986336042497483, −3.88093688066149253548001911777, −2.79258800791675223531111938517, −1.55886991044880893217265483730, 0.38112875905549391131519117578, 1.44546909418293370403047546921, 2.87627109242000962103174978965, 3.47735647062810129913086335722, 4.72728287401429930062566816235, 5.55728646963653702755526927768, 6.47326237654290066674501015379, 7.20795023212027237653289138414, 7.67529897030406957215542048350, 8.646326429080559545066155399714

Graph of the $Z$-function along the critical line