L(s) = 1 | + 4i·2-s − 16·4-s − 51i·5-s + 105i·7-s − 64i·8-s + 204·10-s − 120i·11-s + (−598 + 117i)13-s − 420·14-s + 256·16-s + 1.10e3·17-s − 1.17e3i·19-s + 816i·20-s + 480·22-s − 1.05e3·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s − 0.912i·5-s + 0.809i·7-s − 0.353i·8-s + 0.645·10-s − 0.299i·11-s + (−0.981 + 0.192i)13-s − 0.572·14-s + 0.250·16-s + 0.923·17-s − 0.743i·19-s + 0.456i·20-s + 0.211·22-s − 0.413·23-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(−0.192−0.981i)Λ(6−s)
Λ(s)=(=(234s/2ΓC(s+5/2)L(s)(−0.192−0.981i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
−0.192−0.981i
|
Analytic conductor: |
37.5298 |
Root analytic conductor: |
6.12615 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :5/2), −0.192−0.981i)
|
Particular Values
L(3) |
≈ |
1.477050440 |
L(21) |
≈ |
1.477050440 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 3 | 1 |
| 13 | 1+(598−117i)T |
good | 5 | 1+51iT−3.12e3T2 |
| 7 | 1−105iT−1.68e4T2 |
| 11 | 1+120iT−1.61e5T2 |
| 17 | 1−1.10e3T+1.41e6T2 |
| 19 | 1+1.17e3iT−2.47e6T2 |
| 23 | 1+1.05e3T+6.43e6T2 |
| 29 | 1−4.10e3T+2.05e7T2 |
| 31 | 1−9.62e3iT−2.86e7T2 |
| 37 | 1−8.70e3iT−6.93e7T2 |
| 41 | 1−9.48e3iT−1.15e8T2 |
| 43 | 1−9.99e3T+1.47e8T2 |
| 47 | 1−2.94e3iT−2.29e8T2 |
| 53 | 1−750T+4.18e8T2 |
| 59 | 1−4.09e4iT−7.14e8T2 |
| 61 | 1+5.79e4T+8.44e8T2 |
| 67 | 1−2.28e4iT−1.35e9T2 |
| 71 | 1+6.37e4iT−1.80e9T2 |
| 73 | 1−5.88e4iT−2.07e9T2 |
| 79 | 1−6.32e4T+3.07e9T2 |
| 83 | 1+5.54e4iT−3.93e9T2 |
| 89 | 1−1.04e5iT−5.58e9T2 |
| 97 | 1−1.60e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.01564722989896368056223299065, −10.41389127526647543608719727596, −9.302176830956230348269183314698, −8.662558588919773944038673621331, −7.69034022700876328380984609525, −6.46717429904714964533298894295, −5.31584219160445818996791528294, −4.63755667528941151464541650240, −2.88290570232400841982222788082, −1.07623588320045590845175062375,
0.50840447317880579821769245286, 2.14130213880402589254586535111, 3.33124898745015316029784352709, 4.41321701233527808421709477405, 5.84144785520744976759359268610, 7.20402634972305475145049259457, 7.911105876696710420724617482656, 9.502633645548166488651127554080, 10.23679384610399907726125006126, 10.85941592912127044059202774695