L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1 + 1.73i)5-s + (−0.499 + 0.866i)9-s + (−1 − 1.73i)11-s − 13-s + 1.99·15-s + (−0.5 + 0.866i)19-s + (0.500 + 0.866i)25-s + 0.999·27-s + 4·29-s + (−4.5 − 7.79i)31-s + (−0.999 + 1.73i)33-s + (−1.5 + 2.59i)37-s + (0.5 + 0.866i)39-s + 10·41-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.447 + 0.774i)5-s + (−0.166 + 0.288i)9-s + (−0.301 − 0.522i)11-s − 0.277·13-s + 0.516·15-s + (−0.114 + 0.198i)19-s + (0.100 + 0.173i)25-s + 0.192·27-s + 0.742·29-s + (−0.808 − 1.39i)31-s + (−0.174 + 0.301i)33-s + (−0.246 + 0.427i)37-s + (0.0800 + 0.138i)39-s + 1.56·41-s + ⋯ |
Λ(s)=(=(2352s/2ΓC(s)L(s)(0.386+0.922i)Λ(2−s)
Λ(s)=(=(2352s/2ΓC(s+1/2)L(s)(0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
2352
= 24⋅3⋅72
|
Sign: |
0.386+0.922i
|
Analytic conductor: |
18.7808 |
Root analytic conductor: |
4.33368 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2352(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2352, ( :1/2), 0.386+0.922i)
|
Particular Values
L(1) |
≈ |
1.067016867 |
L(21) |
≈ |
1.067016867 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.5+0.866i)T |
| 7 | 1 |
good | 5 | 1+(1−1.73i)T+(−2.5−4.33i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+T+13T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(0.5−0.866i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1−4T+29T2 |
| 31 | 1+(4.5+7.79i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1.5−2.59i)T+(−18.5−32.0i)T2 |
| 41 | 1−10T+41T2 |
| 43 | 1+5T+43T2 |
| 47 | 1+(−3+5.19i)T+(−23.5−40.7i)T2 |
| 53 | 1+(6+10.3i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−6−10.3i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−5+8.66i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.5+4.33i)T+(−33.5+58.0i)T2 |
| 71 | 1−6T+71T2 |
| 73 | 1+(1.5+2.59i)T+(−36.5+63.2i)T2 |
| 79 | 1+(0.5−0.866i)T+(−39.5−68.4i)T2 |
| 83 | 1−6T+83T2 |
| 89 | 1+(−8+13.8i)T+(−44.5−77.0i)T2 |
| 97 | 1−6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.684889161753761560473567019582, −7.909045691144720300120806875039, −7.32261834993700179439043149342, −6.57016608492475979686698495591, −5.84026189614859112568099672593, −4.96091405593089452204061687943, −3.84863333838841410091079739919, −2.99143157666048655603679958200, −2.01089182619269223536061129716, −0.47028297774634751305130093318,
0.958279965519298771505917870043, 2.40551943175937956168835354156, 3.55664990711288053508099302551, 4.52461183979568642344119666214, 4.95337912383628265493927035745, 5.86586756947129023559217404769, 6.85522947369371698647412011586, 7.63675229315057595033968778765, 8.480736461094823191957060942817, 9.095650843607342341286807058191