L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1 + 1.73i)5-s + (−0.499 + 0.866i)9-s + (−1 − 1.73i)11-s − 13-s + 1.99·15-s + (−0.5 + 0.866i)19-s + (0.500 + 0.866i)25-s + 0.999·27-s + 4·29-s + (−4.5 − 7.79i)31-s + (−0.999 + 1.73i)33-s + (−1.5 + 2.59i)37-s + (0.5 + 0.866i)39-s + 10·41-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.447 + 0.774i)5-s + (−0.166 + 0.288i)9-s + (−0.301 − 0.522i)11-s − 0.277·13-s + 0.516·15-s + (−0.114 + 0.198i)19-s + (0.100 + 0.173i)25-s + 0.192·27-s + 0.742·29-s + (−0.808 − 1.39i)31-s + (−0.174 + 0.301i)33-s + (−0.246 + 0.427i)37-s + (0.0800 + 0.138i)39-s + 1.56·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.067016867\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.067016867\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1 - 1.73i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + T + 13T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + (4.5 + 7.79i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 10T + 41T^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6 + 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6 - 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 + 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + (1.5 + 2.59i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (-8 + 13.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.684889161753761560473567019582, −7.909045691144720300120806875039, −7.32261834993700179439043149342, −6.57016608492475979686698495591, −5.84026189614859112568099672593, −4.96091405593089452204061687943, −3.84863333838841410091079739919, −2.99143157666048655603679958200, −2.01089182619269223536061129716, −0.47028297774634751305130093318,
0.958279965519298771505917870043, 2.40551943175937956168835354156, 3.55664990711288053508099302551, 4.52461183979568642344119666214, 4.95337912383628265493927035745, 5.86586756947129023559217404769, 6.85522947369371698647412011586, 7.63675229315057595033968778765, 8.480736461094823191957060942817, 9.095650843607342341286807058191