L(s) = 1 | + 3-s + 4·5-s + 2·11-s + 12·13-s + 4·15-s − 4·17-s + 4·19-s + 2·23-s + 5·25-s − 27-s − 4·29-s + 2·33-s − 2·37-s + 12·39-s + 8·43-s − 12·47-s − 4·51-s + 6·53-s + 8·55-s + 4·57-s + 8·59-s + 6·61-s + 48·65-s − 8·67-s + 2·69-s − 28·71-s − 2·73-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.78·5-s + 0.603·11-s + 3.32·13-s + 1.03·15-s − 0.970·17-s + 0.917·19-s + 0.417·23-s + 25-s − 0.192·27-s − 0.742·29-s + 0.348·33-s − 0.328·37-s + 1.92·39-s + 1.21·43-s − 1.75·47-s − 0.560·51-s + 0.824·53-s + 1.07·55-s + 0.529·57-s + 1.04·59-s + 0.768·61-s + 5.95·65-s − 0.977·67-s + 0.240·69-s − 3.32·71-s − 0.234·73-s + ⋯ |
Λ(s)=(=(5531904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(5531904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
5531904
= 28⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
352.718 |
Root analytic conductor: |
4.33368 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 5531904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.484678582 |
L(21) |
≈ |
6.484678582 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−T+T2 |
| 7 | | 1 |
good | 5 | C22 | 1−4T+11T2−4pT3+p2T4 |
| 11 | C22 | 1−2T−7T2−2pT3+p2T4 |
| 13 | C2 | (1−6T+pT2)2 |
| 17 | C22 | 1+4T−T2+4pT3+p2T4 |
| 19 | C22 | 1−4T−3T2−4pT3+p2T4 |
| 23 | C22 | 1−2T−19T2−2pT3+p2T4 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C22 | 1−pT2+p2T4 |
| 37 | C22 | 1+2T−33T2+2pT3+p2T4 |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1+12T+97T2+12pT3+p2T4 |
| 53 | C22 | 1−6T−17T2−6pT3+p2T4 |
| 59 | C22 | 1−8T+5T2−8pT3+p2T4 |
| 61 | C22 | 1−6T−25T2−6pT3+p2T4 |
| 67 | C22 | 1+8T−3T2+8pT3+p2T4 |
| 71 | C2 | (1+14T+pT2)2 |
| 73 | C22 | 1+2T−69T2+2pT3+p2T4 |
| 79 | C22 | 1−12T+65T2−12pT3+p2T4 |
| 83 | C2 | (1+4T+pT2)2 |
| 89 | C22 | 1−pT2+p2T4 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.027555529438363187943283828927, −8.956046840235688403531788546853, −8.482407516619999501636047128059, −8.376111132625193368952849482231, −7.46728862802796905732601872059, −7.39982098739445310535291862525, −6.66882391126197595563885479017, −6.34511148292552063414078427128, −6.08400937354671464385571117165, −5.66918592988547226079585033228, −5.59165735081104321113295012941, −4.75917910687312562857920022937, −4.33448063768900240479575768496, −3.76178850314619155644988262670, −3.38640234730325422353778433222, −3.09217022834732506857302488714, −2.24017521120147243938185483902, −1.87530192871213229516472357084, −1.39989156679247641154991923106, −0.913352928619763097449624431112,
0.913352928619763097449624431112, 1.39989156679247641154991923106, 1.87530192871213229516472357084, 2.24017521120147243938185483902, 3.09217022834732506857302488714, 3.38640234730325422353778433222, 3.76178850314619155644988262670, 4.33448063768900240479575768496, 4.75917910687312562857920022937, 5.59165735081104321113295012941, 5.66918592988547226079585033228, 6.08400937354671464385571117165, 6.34511148292552063414078427128, 6.66882391126197595563885479017, 7.39982098739445310535291862525, 7.46728862802796905732601872059, 8.376111132625193368952849482231, 8.482407516619999501636047128059, 8.956046840235688403531788546853, 9.027555529438363187943283828927