L(s) = 1 | − 1.73i·3-s + 0.417·5-s − 2.99·9-s + 18.4i·11-s + 1.16·13-s − 0.723i·15-s − 0.417·17-s − 21.1i·19-s + 16.9i·23-s − 24.8·25-s + 5.19i·27-s + 4.33·29-s − 20.7i·31-s + 31.9·33-s − 61.1·37-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 0.0834·5-s − 0.333·9-s + 1.67i·11-s + 0.0896·13-s − 0.0482i·15-s − 0.0245·17-s − 1.11i·19-s + 0.738i·23-s − 0.993·25-s + 0.192i·27-s + 0.149·29-s − 0.670i·31-s + 0.967·33-s − 1.65·37-s + ⋯ |
Λ(s)=(=(2352s/2ΓC(s)L(s)(−0.866+0.5i)Λ(3−s)
Λ(s)=(=(2352s/2ΓC(s+1)L(s)(−0.866+0.5i)Λ(1−s)
Degree: |
2 |
Conductor: |
2352
= 24⋅3⋅72
|
Sign: |
−0.866+0.5i
|
Analytic conductor: |
64.0873 |
Root analytic conductor: |
8.00545 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2352(1471,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2352, ( :1), −0.866+0.5i)
|
Particular Values
L(23) |
≈ |
0.6939095426 |
L(21) |
≈ |
0.6939095426 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+1.73iT |
| 7 | 1 |
good | 5 | 1−0.417T+25T2 |
| 11 | 1−18.4iT−121T2 |
| 13 | 1−1.16T+169T2 |
| 17 | 1+0.417T+289T2 |
| 19 | 1+21.1iT−361T2 |
| 23 | 1−16.9iT−529T2 |
| 29 | 1−4.33T+841T2 |
| 31 | 1+20.7iT−961T2 |
| 37 | 1+61.1T+1.36e3T2 |
| 41 | 1−9.07T+1.68e3T2 |
| 43 | 1−7.30iT−1.84e3T2 |
| 47 | 1+19.3iT−2.20e3T2 |
| 53 | 1−92.1T+2.80e3T2 |
| 59 | 1+99.2iT−3.48e3T2 |
| 61 | 1+78.6T+3.72e3T2 |
| 67 | 1+77.6iT−4.48e3T2 |
| 71 | 1+43.9iT−5.04e3T2 |
| 73 | 1−53.8T+5.32e3T2 |
| 79 | 1+74.7iT−6.24e3T2 |
| 83 | 1+32.5iT−6.88e3T2 |
| 89 | 1+81.9T+7.92e3T2 |
| 97 | 1−30.1T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.427251776165363770904698036016, −7.49824616549153332317428287264, −7.10781182033392105934296085316, −6.27441119755722482957328493416, −5.29700892015897448170576304935, −4.56134398525228240916183845795, −3.52987317870867121183152822677, −2.31751462900379023057927650987, −1.65205393825054313573273720860, −0.16982063156988279293594728730,
1.17436538884681563788121685552, 2.57207772985668609739763713094, 3.52548102150223635396273207390, 4.13559220699278787562756502109, 5.37841282198820942285490473684, 5.82282639174542888148321607909, 6.68037338475128260962351005599, 7.75461871322066235253043288860, 8.578366384180062155618568931136, 8.895752616844363872678636431190