Properties

Label 2-2352-4.3-c2-0-66
Degree $2$
Conductor $2352$
Sign $-0.866 + 0.5i$
Analytic cond. $64.0873$
Root an. cond. $8.00545$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·3-s + 0.417·5-s − 2.99·9-s + 18.4i·11-s + 1.16·13-s − 0.723i·15-s − 0.417·17-s − 21.1i·19-s + 16.9i·23-s − 24.8·25-s + 5.19i·27-s + 4.33·29-s − 20.7i·31-s + 31.9·33-s − 61.1·37-s + ⋯
L(s)  = 1  − 0.577i·3-s + 0.0834·5-s − 0.333·9-s + 1.67i·11-s + 0.0896·13-s − 0.0482i·15-s − 0.0245·17-s − 1.11i·19-s + 0.738i·23-s − 0.993·25-s + 0.192i·27-s + 0.149·29-s − 0.670i·31-s + 0.967·33-s − 1.65·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.866 + 0.5i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.866 + 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2352\)    =    \(2^{4} \cdot 3 \cdot 7^{2}\)
Sign: $-0.866 + 0.5i$
Analytic conductor: \(64.0873\)
Root analytic conductor: \(8.00545\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2352} (1471, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2352,\ (\ :1),\ -0.866 + 0.5i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6939095426\)
\(L(\frac12)\) \(\approx\) \(0.6939095426\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 1.73iT \)
7 \( 1 \)
good5 \( 1 - 0.417T + 25T^{2} \)
11 \( 1 - 18.4iT - 121T^{2} \)
13 \( 1 - 1.16T + 169T^{2} \)
17 \( 1 + 0.417T + 289T^{2} \)
19 \( 1 + 21.1iT - 361T^{2} \)
23 \( 1 - 16.9iT - 529T^{2} \)
29 \( 1 - 4.33T + 841T^{2} \)
31 \( 1 + 20.7iT - 961T^{2} \)
37 \( 1 + 61.1T + 1.36e3T^{2} \)
41 \( 1 - 9.07T + 1.68e3T^{2} \)
43 \( 1 - 7.30iT - 1.84e3T^{2} \)
47 \( 1 + 19.3iT - 2.20e3T^{2} \)
53 \( 1 - 92.1T + 2.80e3T^{2} \)
59 \( 1 + 99.2iT - 3.48e3T^{2} \)
61 \( 1 + 78.6T + 3.72e3T^{2} \)
67 \( 1 + 77.6iT - 4.48e3T^{2} \)
71 \( 1 + 43.9iT - 5.04e3T^{2} \)
73 \( 1 - 53.8T + 5.32e3T^{2} \)
79 \( 1 + 74.7iT - 6.24e3T^{2} \)
83 \( 1 + 32.5iT - 6.88e3T^{2} \)
89 \( 1 + 81.9T + 7.92e3T^{2} \)
97 \( 1 - 30.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.427251776165363770904698036016, −7.49824616549153332317428287264, −7.10781182033392105934296085316, −6.27441119755722482957328493416, −5.29700892015897448170576304935, −4.56134398525228240916183845795, −3.52987317870867121183152822677, −2.31751462900379023057927650987, −1.65205393825054313573273720860, −0.16982063156988279293594728730, 1.17436538884681563788121685552, 2.57207772985668609739763713094, 3.52548102150223635396273207390, 4.13559220699278787562756502109, 5.37841282198820942285490473684, 5.82282639174542888148321607909, 6.68037338475128260962351005599, 7.75461871322066235253043288860, 8.578366384180062155618568931136, 8.895752616844363872678636431190

Graph of the $Z$-function along the critical line