L(s) = 1 | + 2.79·3-s + 3.79i·5-s − 2·7-s + 4.79·9-s − 3.79·11-s − 0.791i·13-s + 10.5i·15-s − 1.58i·17-s + 7.58i·19-s − 5.58·21-s + 0.791i·23-s − 9.37·25-s + 4.99·27-s + 0.791i·29-s + 5.37i·31-s + ⋯ |
L(s) = 1 | + 1.61·3-s + 1.69i·5-s − 0.755·7-s + 1.59·9-s − 1.14·11-s − 0.219i·13-s + 2.73i·15-s − 0.383i·17-s + 1.73i·19-s − 1.21·21-s + 0.164i·23-s − 1.87·25-s + 0.962·27-s + 0.146i·29-s + 0.965i·31-s + ⋯ |
Λ(s)=(=(2368s/2ΓC(s)L(s)(−0.657−0.753i)Λ(2−s)
Λ(s)=(=(2368s/2ΓC(s+1/2)L(s)(−0.657−0.753i)Λ(1−s)
Degree: |
2 |
Conductor: |
2368
= 26⋅37
|
Sign: |
−0.657−0.753i
|
Analytic conductor: |
18.9085 |
Root analytic conductor: |
4.34839 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2368(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2368, ( :1/2), −0.657−0.753i)
|
Particular Values
L(1) |
≈ |
2.135162802 |
L(21) |
≈ |
2.135162802 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+(4+4.58i)T |
good | 3 | 1−2.79T+3T2 |
| 5 | 1−3.79iT−5T2 |
| 7 | 1+2T+7T2 |
| 11 | 1+3.79T+11T2 |
| 13 | 1+0.791iT−13T2 |
| 17 | 1+1.58iT−17T2 |
| 19 | 1−7.58iT−19T2 |
| 23 | 1−0.791iT−23T2 |
| 29 | 1−0.791iT−29T2 |
| 31 | 1−5.37iT−31T2 |
| 41 | 1−5.20T+41T2 |
| 43 | 1−6iT−43T2 |
| 47 | 1−1.58T+47T2 |
| 53 | 1+7.58T+53T2 |
| 59 | 1−7.58iT−59T2 |
| 61 | 1+8.20iT−61T2 |
| 67 | 1−7.37T+67T2 |
| 71 | 1−9.16T+71T2 |
| 73 | 1−9.37T+73T2 |
| 79 | 1−12.7iT−79T2 |
| 83 | 1−3.16T+83T2 |
| 89 | 1−6iT−89T2 |
| 97 | 1+4.41iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.447671436703243390174000094296, −8.222574532934674868974645967015, −7.83933476409230407025945932743, −7.12057995466516196225358823544, −6.41150368932250250680772871955, −5.42799649979192886927991131571, −3.92217155651008412186320171042, −3.25705491625013597938919224255, −2.81080279284915227828569898289, −1.96191210290417094245436604385,
0.53024619584692557849770158882, 1.96772242624668441046302056651, 2.76874914202589151159143031377, 3.74652266801868183118272949905, 4.61641554909603812503223250174, 5.28597592303877060713771939646, 6.48124805816375689959541242271, 7.52397521145450639807884286036, 8.131664731025099697561730800888, 8.718682020742154788453587652056