L(s) = 1 | + 2.79·3-s + 3.79i·5-s − 2·7-s + 4.79·9-s − 3.79·11-s − 0.791i·13-s + 10.5i·15-s − 1.58i·17-s + 7.58i·19-s − 5.58·21-s + 0.791i·23-s − 9.37·25-s + 4.99·27-s + 0.791i·29-s + 5.37i·31-s + ⋯ |
L(s) = 1 | + 1.61·3-s + 1.69i·5-s − 0.755·7-s + 1.59·9-s − 1.14·11-s − 0.219i·13-s + 2.73i·15-s − 0.383i·17-s + 1.73i·19-s − 1.21·21-s + 0.164i·23-s − 1.87·25-s + 0.962·27-s + 0.146i·29-s + 0.965i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.657 - 0.753i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.657 - 0.753i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.135162802\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.135162802\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + (4 + 4.58i)T \) |
good | 3 | \( 1 - 2.79T + 3T^{2} \) |
| 5 | \( 1 - 3.79iT - 5T^{2} \) |
| 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 + 3.79T + 11T^{2} \) |
| 13 | \( 1 + 0.791iT - 13T^{2} \) |
| 17 | \( 1 + 1.58iT - 17T^{2} \) |
| 19 | \( 1 - 7.58iT - 19T^{2} \) |
| 23 | \( 1 - 0.791iT - 23T^{2} \) |
| 29 | \( 1 - 0.791iT - 29T^{2} \) |
| 31 | \( 1 - 5.37iT - 31T^{2} \) |
| 41 | \( 1 - 5.20T + 41T^{2} \) |
| 43 | \( 1 - 6iT - 43T^{2} \) |
| 47 | \( 1 - 1.58T + 47T^{2} \) |
| 53 | \( 1 + 7.58T + 53T^{2} \) |
| 59 | \( 1 - 7.58iT - 59T^{2} \) |
| 61 | \( 1 + 8.20iT - 61T^{2} \) |
| 67 | \( 1 - 7.37T + 67T^{2} \) |
| 71 | \( 1 - 9.16T + 71T^{2} \) |
| 73 | \( 1 - 9.37T + 73T^{2} \) |
| 79 | \( 1 - 12.7iT - 79T^{2} \) |
| 83 | \( 1 - 3.16T + 83T^{2} \) |
| 89 | \( 1 - 6iT - 89T^{2} \) |
| 97 | \( 1 + 4.41iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.447671436703243390174000094296, −8.222574532934674868974645967015, −7.83933476409230407025945932743, −7.12057995466516196225358823544, −6.41150368932250250680772871955, −5.42799649979192886927991131571, −3.92217155651008412186320171042, −3.25705491625013597938919224255, −2.81080279284915227828569898289, −1.96191210290417094245436604385,
0.53024619584692557849770158882, 1.96772242624668441046302056651, 2.76874914202589151159143031377, 3.74652266801868183118272949905, 4.61641554909603812503223250174, 5.28597592303877060713771939646, 6.48124805816375689959541242271, 7.52397521145450639807884286036, 8.131664731025099697561730800888, 8.718682020742154788453587652056