L(s) = 1 | + (0.437 − 0.437i)2-s + 0.618i·4-s + (−0.156 + 0.987i)5-s + (1.26 + 1.26i)7-s + (0.707 + 0.707i)8-s + (0.363 + 0.5i)10-s + (0.221 − 0.221i)13-s + 1.10·14-s + (−0.610 − 0.0966i)20-s + (−1.34 − 1.34i)23-s + (−0.951 − 0.309i)25-s − 0.193i·26-s + (−0.778 + 0.778i)28-s + (−0.707 + 0.707i)32-s + (−1.44 + 1.04i)35-s + ⋯ |
L(s) = 1 | + (0.437 − 0.437i)2-s + 0.618i·4-s + (−0.156 + 0.987i)5-s + (1.26 + 1.26i)7-s + (0.707 + 0.707i)8-s + (0.363 + 0.5i)10-s + (0.221 − 0.221i)13-s + 1.10·14-s + (−0.610 − 0.0966i)20-s + (−1.34 − 1.34i)23-s + (−0.951 − 0.309i)25-s − 0.193i·26-s + (−0.778 + 0.778i)28-s + (−0.707 + 0.707i)32-s + (−1.44 + 1.04i)35-s + ⋯ |
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.379−0.925i)Λ(1−s)
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.379−0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
2385
= 32⋅5⋅53
|
Sign: |
0.379−0.925i
|
Analytic conductor: |
1.19027 |
Root analytic conductor: |
1.09099 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2385(847,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2385, ( :0), 0.379−0.925i)
|
Particular Values
L(21) |
≈ |
1.687757719 |
L(21) |
≈ |
1.687757719 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.156−0.987i)T |
| 53 | 1+(−0.707−0.707i)T |
good | 2 | 1+(−0.437+0.437i)T−iT2 |
| 7 | 1+(−1.26−1.26i)T+iT2 |
| 11 | 1+T2 |
| 13 | 1+(−0.221+0.221i)T−iT2 |
| 17 | 1+iT2 |
| 19 | 1+T2 |
| 23 | 1+(1.34+1.34i)T+iT2 |
| 29 | 1−T2 |
| 31 | 1−T2 |
| 37 | 1+(0.642+0.642i)T+iT2 |
| 41 | 1+1.78iT−T2 |
| 43 | 1+(−1.39+1.39i)T−iT2 |
| 47 | 1+iT2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−iT2 |
| 71 | 1+0.312iT−T2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1+(−0.831−0.831i)T+iT2 |
| 89 | 1−T2 |
| 97 | 1+(−1.39−1.39i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.055273796735032545594768499325, −8.481529284171430259071170163126, −7.82500924155946355986077508406, −7.14471598201569218059913294655, −6.01551838654121387425615683442, −5.33647627612133949719810826209, −4.32517546098766729924469453015, −3.61169528806742828997469086691, −2.36797251755151925912483369283, −2.17730721520262384172828419723,
1.10274054816285054716898597743, 1.74865919950082576267216599250, 3.76463554041042776346932577052, 4.40242660934973347767687651986, 4.96108457612124592451338789844, 5.74486711442119976075857777817, 6.61654900199044980084742111939, 7.73575353949359439774309134815, 7.84622385284706663550499115894, 8.973052293706699991244518575880