L(s) = 1 | + (0.437 − 0.437i)2-s + 0.618i·4-s + (−0.156 + 0.987i)5-s + (1.26 + 1.26i)7-s + (0.707 + 0.707i)8-s + (0.363 + 0.5i)10-s + (0.221 − 0.221i)13-s + 1.10·14-s + (−0.610 − 0.0966i)20-s + (−1.34 − 1.34i)23-s + (−0.951 − 0.309i)25-s − 0.193i·26-s + (−0.778 + 0.778i)28-s + (−0.707 + 0.707i)32-s + (−1.44 + 1.04i)35-s + ⋯ |
L(s) = 1 | + (0.437 − 0.437i)2-s + 0.618i·4-s + (−0.156 + 0.987i)5-s + (1.26 + 1.26i)7-s + (0.707 + 0.707i)8-s + (0.363 + 0.5i)10-s + (0.221 − 0.221i)13-s + 1.10·14-s + (−0.610 − 0.0966i)20-s + (−1.34 − 1.34i)23-s + (−0.951 − 0.309i)25-s − 0.193i·26-s + (−0.778 + 0.778i)28-s + (−0.707 + 0.707i)32-s + (−1.44 + 1.04i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.379 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.379 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.687757719\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.687757719\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.156 - 0.987i)T \) |
| 53 | \( 1 + (-0.707 - 0.707i)T \) |
good | 2 | \( 1 + (-0.437 + 0.437i)T - iT^{2} \) |
| 7 | \( 1 + (-1.26 - 1.26i)T + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-0.221 + 0.221i)T - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (1.34 + 1.34i)T + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.642 + 0.642i)T + iT^{2} \) |
| 41 | \( 1 + 1.78iT - T^{2} \) |
| 43 | \( 1 + (-1.39 + 1.39i)T - iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + 0.312iT - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (-0.831 - 0.831i)T + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-1.39 - 1.39i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.055273796735032545594768499325, −8.481529284171430259071170163126, −7.82500924155946355986077508406, −7.14471598201569218059913294655, −6.01551838654121387425615683442, −5.33647627612133949719810826209, −4.32517546098766729924469453015, −3.61169528806742828997469086691, −2.36797251755151925912483369283, −2.17730721520262384172828419723,
1.10274054816285054716898597743, 1.74865919950082576267216599250, 3.76463554041042776346932577052, 4.40242660934973347767687651986, 4.96108457612124592451338789844, 5.74486711442119976075857777817, 6.61654900199044980084742111939, 7.73575353949359439774309134815, 7.84622385284706663550499115894, 8.973052293706699991244518575880