L(s) = 1 | + (−0.707 − 1.58i)3-s − 2.23i·5-s − 4.24·7-s + (−2.00 + 2.23i)9-s + (−3.53 + 1.58i)15-s + (3 + 6.70i)21-s − 9.48i·23-s − 5.00·25-s + (4.94 + 1.58i)27-s − 8.94i·29-s + 9.48i·35-s − 4.47i·41-s + 12.7·43-s + (5.00 + 4.47i)45-s + 9.48i·47-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.912i)3-s − 0.999i·5-s − 1.60·7-s + (−0.666 + 0.745i)9-s + (−0.912 + 0.408i)15-s + (0.654 + 1.46i)21-s − 1.97i·23-s − 1.00·25-s + (0.952 + 0.304i)27-s − 1.66i·29-s + 1.60i·35-s − 0.698i·41-s + 1.94·43-s + (0.745 + 0.666i)45-s + 1.38i·47-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(−0.912+0.408i)Λ(2−s)
Λ(s)=(=(240s/2ΓC(s+1/2)L(s)(−0.912+0.408i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
−0.912+0.408i
|
Analytic conductor: |
1.91640 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :1/2), −0.912+0.408i)
|
Particular Values
L(1) |
≈ |
0.133376−0.624942i |
L(21) |
≈ |
0.133376−0.624942i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.707+1.58i)T |
| 5 | 1+2.23iT |
good | 7 | 1+4.24T+7T2 |
| 11 | 1+11T2 |
| 13 | 1−13T2 |
| 17 | 1+17T2 |
| 19 | 1−19T2 |
| 23 | 1+9.48iT−23T2 |
| 29 | 1+8.94iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1−37T2 |
| 41 | 1+4.47iT−41T2 |
| 43 | 1−12.7T+43T2 |
| 47 | 1−9.48iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1+8T+61T2 |
| 67 | 1−4.24T+67T2 |
| 71 | 1+71T2 |
| 73 | 1−73T2 |
| 79 | 1−79T2 |
| 83 | 1+9.48iT−83T2 |
| 89 | 1−17.8iT−89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.17364115039456872930094446837, −10.82804725876035594364390919149, −9.697860553828572234477468062393, −8.766092299948606886619060035612, −7.69509883303102088749725745509, −6.48589477155513661571079341489, −5.81924034855598533822454440195, −4.33195339279635486193965981887, −2.55873991987141084249143622113, −0.52268030501985972374441723664,
3.04161388429217758519522527978, 3.77025411668760495326681732912, 5.49883589410066484416491785194, 6.39920909926275457995919603208, 7.33515196440029765902914468121, 9.085924980307799539241083697314, 9.770053059269143864103826346517, 10.53632331909272887233558415503, 11.39441915962966927951661169798, 12.41883650815690816896739777427