Properties

Label 2-240-60.59-c1-0-11
Degree $2$
Conductor $240$
Sign $-0.912 + 0.408i$
Analytic cond. $1.91640$
Root an. cond. $1.38434$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 1.58i)3-s − 2.23i·5-s − 4.24·7-s + (−2.00 + 2.23i)9-s + (−3.53 + 1.58i)15-s + (3 + 6.70i)21-s − 9.48i·23-s − 5.00·25-s + (4.94 + 1.58i)27-s − 8.94i·29-s + 9.48i·35-s − 4.47i·41-s + 12.7·43-s + (5.00 + 4.47i)45-s + 9.48i·47-s + ⋯
L(s)  = 1  + (−0.408 − 0.912i)3-s − 0.999i·5-s − 1.60·7-s + (−0.666 + 0.745i)9-s + (−0.912 + 0.408i)15-s + (0.654 + 1.46i)21-s − 1.97i·23-s − 1.00·25-s + (0.952 + 0.304i)27-s − 1.66i·29-s + 1.60i·35-s − 0.698i·41-s + 1.94·43-s + (0.745 + 0.666i)45-s + 1.38i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.912 + 0.408i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.912 + 0.408i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $-0.912 + 0.408i$
Analytic conductor: \(1.91640\)
Root analytic conductor: \(1.38434\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{240} (239, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 240,\ (\ :1/2),\ -0.912 + 0.408i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.133376 - 0.624942i\)
\(L(\frac12)\) \(\approx\) \(0.133376 - 0.624942i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.707 + 1.58i)T \)
5 \( 1 + 2.23iT \)
good7 \( 1 + 4.24T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 9.48iT - 23T^{2} \)
29 \( 1 + 8.94iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 + 4.47iT - 41T^{2} \)
43 \( 1 - 12.7T + 43T^{2} \)
47 \( 1 - 9.48iT - 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 8T + 61T^{2} \)
67 \( 1 - 4.24T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 9.48iT - 83T^{2} \)
89 \( 1 - 17.8iT - 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.17364115039456872930094446837, −10.82804725876035594364390919149, −9.697860553828572234477468062393, −8.766092299948606886619060035612, −7.69509883303102088749725745509, −6.48589477155513661571079341489, −5.81924034855598533822454440195, −4.33195339279635486193965981887, −2.55873991987141084249143622113, −0.52268030501985972374441723664, 3.04161388429217758519522527978, 3.77025411668760495326681732912, 5.49883589410066484416491785194, 6.39920909926275457995919603208, 7.33515196440029765902914468121, 9.085924980307799539241083697314, 9.770053059269143864103826346517, 10.53632331909272887233558415503, 11.39441915962966927951661169798, 12.41883650815690816896739777427

Graph of the $Z$-function along the critical line