Properties

Label 2-240-1.1-c3-0-11
Degree $2$
Conductor $240$
Sign $-1$
Analytic cond. $14.1604$
Root an. cond. $3.76303$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5·5-s − 32·7-s + 9·9-s − 36·11-s − 10·13-s + 15·15-s − 78·17-s − 140·19-s − 96·21-s + 192·23-s + 25·25-s + 27·27-s + 6·29-s + 16·31-s − 108·33-s − 160·35-s − 34·37-s − 30·39-s − 390·41-s + 52·43-s + 45·45-s − 408·47-s + 681·49-s − 234·51-s − 114·53-s − 180·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.72·7-s + 1/3·9-s − 0.986·11-s − 0.213·13-s + 0.258·15-s − 1.11·17-s − 1.69·19-s − 0.997·21-s + 1.74·23-s + 1/5·25-s + 0.192·27-s + 0.0384·29-s + 0.0926·31-s − 0.569·33-s − 0.772·35-s − 0.151·37-s − 0.123·39-s − 1.48·41-s + 0.184·43-s + 0.149·45-s − 1.26·47-s + 1.98·49-s − 0.642·51-s − 0.295·53-s − 0.441·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(14.1604\)
Root analytic conductor: \(3.76303\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 240,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 - p T \)
good7 \( 1 + 32 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 + 10 T + p^{3} T^{2} \)
17 \( 1 + 78 T + p^{3} T^{2} \)
19 \( 1 + 140 T + p^{3} T^{2} \)
23 \( 1 - 192 T + p^{3} T^{2} \)
29 \( 1 - 6 T + p^{3} T^{2} \)
31 \( 1 - 16 T + p^{3} T^{2} \)
37 \( 1 + 34 T + p^{3} T^{2} \)
41 \( 1 + 390 T + p^{3} T^{2} \)
43 \( 1 - 52 T + p^{3} T^{2} \)
47 \( 1 + 408 T + p^{3} T^{2} \)
53 \( 1 + 114 T + p^{3} T^{2} \)
59 \( 1 + 516 T + p^{3} T^{2} \)
61 \( 1 + 58 T + p^{3} T^{2} \)
67 \( 1 - 892 T + p^{3} T^{2} \)
71 \( 1 - 120 T + p^{3} T^{2} \)
73 \( 1 + 646 T + p^{3} T^{2} \)
79 \( 1 - 1168 T + p^{3} T^{2} \)
83 \( 1 - 732 T + p^{3} T^{2} \)
89 \( 1 + 1590 T + p^{3} T^{2} \)
97 \( 1 - 2 p T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93938158024673929899604813785, −10.14220325816311825207945120638, −9.269499407560692814971699815077, −8.462446752671038454783541104852, −6.98318920215576826243112993680, −6.32707470388400166271658294227, −4.82924913449240888347252086771, −3.31443828568712893748331786799, −2.33530647153277444876327397949, 0, 2.33530647153277444876327397949, 3.31443828568712893748331786799, 4.82924913449240888347252086771, 6.32707470388400166271658294227, 6.98318920215576826243112993680, 8.462446752671038454783541104852, 9.269499407560692814971699815077, 10.14220325816311825207945120638, 10.93938158024673929899604813785

Graph of the $Z$-function along the critical line