L(s) = 1 | + 3·3-s + 5·5-s − 32·7-s + 9·9-s − 36·11-s − 10·13-s + 15·15-s − 78·17-s − 140·19-s − 96·21-s + 192·23-s + 25·25-s + 27·27-s + 6·29-s + 16·31-s − 108·33-s − 160·35-s − 34·37-s − 30·39-s − 390·41-s + 52·43-s + 45·45-s − 408·47-s + 681·49-s − 234·51-s − 114·53-s − 180·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s − 1.72·7-s + 1/3·9-s − 0.986·11-s − 0.213·13-s + 0.258·15-s − 1.11·17-s − 1.69·19-s − 0.997·21-s + 1.74·23-s + 1/5·25-s + 0.192·27-s + 0.0384·29-s + 0.0926·31-s − 0.569·33-s − 0.772·35-s − 0.151·37-s − 0.123·39-s − 1.48·41-s + 0.184·43-s + 0.149·45-s − 1.26·47-s + 1.98·49-s − 0.642·51-s − 0.295·53-s − 0.441·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - p T \) |
| 5 | \( 1 - p T \) |
good | 7 | \( 1 + 32 T + p^{3} T^{2} \) |
| 11 | \( 1 + 36 T + p^{3} T^{2} \) |
| 13 | \( 1 + 10 T + p^{3} T^{2} \) |
| 17 | \( 1 + 78 T + p^{3} T^{2} \) |
| 19 | \( 1 + 140 T + p^{3} T^{2} \) |
| 23 | \( 1 - 192 T + p^{3} T^{2} \) |
| 29 | \( 1 - 6 T + p^{3} T^{2} \) |
| 31 | \( 1 - 16 T + p^{3} T^{2} \) |
| 37 | \( 1 + 34 T + p^{3} T^{2} \) |
| 41 | \( 1 + 390 T + p^{3} T^{2} \) |
| 43 | \( 1 - 52 T + p^{3} T^{2} \) |
| 47 | \( 1 + 408 T + p^{3} T^{2} \) |
| 53 | \( 1 + 114 T + p^{3} T^{2} \) |
| 59 | \( 1 + 516 T + p^{3} T^{2} \) |
| 61 | \( 1 + 58 T + p^{3} T^{2} \) |
| 67 | \( 1 - 892 T + p^{3} T^{2} \) |
| 71 | \( 1 - 120 T + p^{3} T^{2} \) |
| 73 | \( 1 + 646 T + p^{3} T^{2} \) |
| 79 | \( 1 - 1168 T + p^{3} T^{2} \) |
| 83 | \( 1 - 732 T + p^{3} T^{2} \) |
| 89 | \( 1 + 1590 T + p^{3} T^{2} \) |
| 97 | \( 1 - 2 p T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93938158024673929899604813785, −10.14220325816311825207945120638, −9.269499407560692814971699815077, −8.462446752671038454783541104852, −6.98318920215576826243112993680, −6.32707470388400166271658294227, −4.82924913449240888347252086771, −3.31443828568712893748331786799, −2.33530647153277444876327397949, 0,
2.33530647153277444876327397949, 3.31443828568712893748331786799, 4.82924913449240888347252086771, 6.32707470388400166271658294227, 6.98318920215576826243112993680, 8.462446752671038454783541104852, 9.269499407560692814971699815077, 10.14220325816311825207945120638, 10.93938158024673929899604813785