L(s) = 1 | − 3i·3-s + (−0.178 − 11.1i)5-s − 35.0i·7-s − 9·9-s − 25.6·11-s + 37.6i·13-s + (−33.5 + 0.536i)15-s + 95.7i·17-s + 50.8·19-s − 105.·21-s − 110. i·23-s + (−124. + 4i)25-s + 27i·27-s + 54.5·29-s − 198.·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.0160 − 0.999i)5-s − 1.89i·7-s − 0.333·9-s − 0.702·11-s + 0.803i·13-s + (−0.577 + 0.00923i)15-s + 1.36i·17-s + 0.614·19-s − 1.09·21-s − 1.00i·23-s + (−0.999 + 0.0320i)25-s + 0.192i·27-s + 0.349·29-s − 1.14·31-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(−0.999+0.0160i)Λ(4−s)
Λ(s)=(=(240s/2ΓC(s+3/2)L(s)(−0.999+0.0160i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
−0.999+0.0160i
|
Analytic conductor: |
14.1604 |
Root analytic conductor: |
3.76303 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :3/2), −0.999+0.0160i)
|
Particular Values
L(2) |
≈ |
0.00888635−1.11058i |
L(21) |
≈ |
0.00888635−1.11058i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 5 | 1+(0.178+11.1i)T |
good | 7 | 1+35.0iT−343T2 |
| 11 | 1+25.6T+1.33e3T2 |
| 13 | 1−37.6iT−2.19e3T2 |
| 17 | 1−95.7iT−4.91e3T2 |
| 19 | 1−50.8T+6.85e3T2 |
| 23 | 1+110.iT−1.21e4T2 |
| 29 | 1−54.5T+2.43e4T2 |
| 31 | 1+198.T+2.97e4T2 |
| 37 | 1+266.iT−5.06e4T2 |
| 41 | 1−103.T+6.89e4T2 |
| 43 | 1+108iT−7.95e4T2 |
| 47 | 1−597.iT−1.03e5T2 |
| 53 | 1+305.iT−1.48e5T2 |
| 59 | 1+223.T+2.05e5T2 |
| 61 | 1−485.T+2.26e5T2 |
| 67 | 1+876.iT−3.00e5T2 |
| 71 | 1+585.T+3.57e5T2 |
| 73 | 1+1.13e3iT−3.89e5T2 |
| 79 | 1−685.T+4.93e5T2 |
| 83 | 1+305.iT−5.71e5T2 |
| 89 | 1+887.T+7.04e5T2 |
| 97 | 1−556.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11175578288673786317611238596, −10.38234440980093782442343390643, −9.195129025820703077377122719733, −8.037510290373641179944365949318, −7.36309866828901167196422079513, −6.18896796102865174884084972502, −4.74796193040842460574158391353, −3.78806937567154481421991053646, −1.67458396370741818752482300532, −0.44017551898848511826201330403,
2.49961775478193313181638303235, 3.22133505303984219599411898940, 5.20595113947110746187314628982, 5.75302322313873772384326035754, 7.21081906028568915162418290393, 8.336417974054437322523780050378, 9.405092260829070861486099379508, 10.13675687228175080325443623427, 11.35114036273896951875872514689, 11.84121038429802159321164183724