L(s) = 1 | − 9·3-s − 25·5-s − 164·7-s + 81·9-s − 720·11-s + 698·13-s + 225·15-s − 2.22e3·17-s − 356·19-s + 1.47e3·21-s + 1.80e3·23-s + 625·25-s − 729·27-s + 714·29-s − 848·31-s + 6.48e3·33-s + 4.10e3·35-s − 1.13e4·37-s − 6.28e3·39-s + 9.35e3·41-s + 5.95e3·43-s − 2.02e3·45-s + 1.11e4·47-s + 1.00e4·49-s + 2.00e4·51-s + 1.41e4·53-s + 1.80e4·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.447·5-s − 1.26·7-s + 1/3·9-s − 1.79·11-s + 1.14·13-s + 0.258·15-s − 1.86·17-s − 0.226·19-s + 0.730·21-s + 0.709·23-s + 1/5·25-s − 0.192·27-s + 0.157·29-s − 0.158·31-s + 1.03·33-s + 0.565·35-s − 1.35·37-s − 0.661·39-s + 0.869·41-s + 0.491·43-s − 0.149·45-s + 0.736·47-s + 0.600·49-s + 1.07·51-s + 0.689·53-s + 0.802·55-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(240s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.6118980092 |
L(21) |
≈ |
0.6118980092 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p2T |
| 5 | 1+p2T |
good | 7 | 1+164T+p5T2 |
| 11 | 1+720T+p5T2 |
| 13 | 1−698T+p5T2 |
| 17 | 1+2226T+p5T2 |
| 19 | 1+356T+p5T2 |
| 23 | 1−1800T+p5T2 |
| 29 | 1−714T+p5T2 |
| 31 | 1+848T+p5T2 |
| 37 | 1+11302T+p5T2 |
| 41 | 1−9354T+p5T2 |
| 43 | 1−5956T+p5T2 |
| 47 | 1−11160T+p5T2 |
| 53 | 1−14106T+p5T2 |
| 59 | 1+7920T+p5T2 |
| 61 | 1+13450T+p5T2 |
| 67 | 1−65476T+p5T2 |
| 71 | 1+34560T+p5T2 |
| 73 | 1−86258T+p5T2 |
| 79 | 1−108832T+p5T2 |
| 83 | 1+10668T+p5T2 |
| 89 | 1−10818T+p5T2 |
| 97 | 1−4418T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89581353712377024745827803222, −10.72022391522388610886261329095, −9.344872854140805077518835704760, −8.348341694552421965485012134524, −7.08399523225577673860474131480, −6.25263771345026341743253032696, −5.10529778034645029102703644458, −3.80552022498707371377988913896, −2.51953314733531064468403921413, −0.44981945464797214779218231291,
0.44981945464797214779218231291, 2.51953314733531064468403921413, 3.80552022498707371377988913896, 5.10529778034645029102703644458, 6.25263771345026341743253032696, 7.08399523225577673860474131480, 8.348341694552421965485012134524, 9.344872854140805077518835704760, 10.72022391522388610886261329095, 10.89581353712377024745827803222