Properties

Label 2-240-1.1-c7-0-24
Degree $2$
Conductor $240$
Sign $-1$
Analytic cond. $74.9724$
Root an. cond. $8.65866$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s + 125·5-s − 512·7-s + 729·9-s − 5.46e3·11-s + 1.01e4·13-s + 3.37e3·15-s − 9.91e3·17-s + 1.24e4·19-s − 1.38e4·21-s − 3.36e4·23-s + 1.56e4·25-s + 1.96e4·27-s − 1.87e5·29-s + 4.25e4·31-s − 1.47e5·33-s − 6.40e4·35-s − 5.44e5·37-s + 2.74e5·39-s + 3.74e5·41-s + 5.40e5·43-s + 9.11e4·45-s − 1.33e6·47-s − 5.61e5·49-s − 2.67e5·51-s + 1.30e6·53-s − 6.82e5·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.564·7-s + 1/3·9-s − 1.23·11-s + 1.28·13-s + 0.258·15-s − 0.489·17-s + 0.415·19-s − 0.325·21-s − 0.575·23-s + 1/5·25-s + 0.192·27-s − 1.43·29-s + 0.256·31-s − 0.714·33-s − 0.252·35-s − 1.76·37-s + 0.740·39-s + 0.848·41-s + 1.03·43-s + 0.149·45-s − 1.88·47-s − 0.681·49-s − 0.282·51-s + 1.20·53-s − 0.553·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(74.9724\)
Root analytic conductor: \(8.65866\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 240,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{3} T \)
5 \( 1 - p^{3} T \)
good7 \( 1 + 512 T + p^{7} T^{2} \)
11 \( 1 + 5460 T + p^{7} T^{2} \)
13 \( 1 - 782 p T + p^{7} T^{2} \)
17 \( 1 + 9918 T + p^{7} T^{2} \)
19 \( 1 - 12436 T + p^{7} T^{2} \)
23 \( 1 + 33600 T + p^{7} T^{2} \)
29 \( 1 + 187914 T + p^{7} T^{2} \)
31 \( 1 - 42592 T + p^{7} T^{2} \)
37 \( 1 + 544066 T + p^{7} T^{2} \)
41 \( 1 - 374394 T + p^{7} T^{2} \)
43 \( 1 - 540532 T + p^{7} T^{2} \)
47 \( 1 + 1338360 T + p^{7} T^{2} \)
53 \( 1 - 1308222 T + p^{7} T^{2} \)
59 \( 1 + 262740 T + p^{7} T^{2} \)
61 \( 1 + 976330 T + p^{7} T^{2} \)
67 \( 1 + 3559172 T + p^{7} T^{2} \)
71 \( 1 - 2673720 T + p^{7} T^{2} \)
73 \( 1 + 3032134 T + p^{7} T^{2} \)
79 \( 1 - 5475808 T + p^{7} T^{2} \)
83 \( 1 + 2231556 T + p^{7} T^{2} \)
89 \( 1 + 10050678 T + p^{7} T^{2} \)
97 \( 1 - 5727554 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32737482471637215150734159373, −9.394815471197496491384459784730, −8.498405629393866490786675704120, −7.50797341354544861232999962217, −6.32041948911103452292749135801, −5.32315204527691294066163117124, −3.84622825285153355522476492189, −2.80585642508887432164779339835, −1.61603332443757290603817402412, 0, 1.61603332443757290603817402412, 2.80585642508887432164779339835, 3.84622825285153355522476492189, 5.32315204527691294066163117124, 6.32041948911103452292749135801, 7.50797341354544861232999962217, 8.498405629393866490786675704120, 9.394815471197496491384459784730, 10.32737482471637215150734159373

Graph of the $Z$-function along the critical line