L(s) = 1 | + 27·3-s + 125·5-s − 512·7-s + 729·9-s − 5.46e3·11-s + 1.01e4·13-s + 3.37e3·15-s − 9.91e3·17-s + 1.24e4·19-s − 1.38e4·21-s − 3.36e4·23-s + 1.56e4·25-s + 1.96e4·27-s − 1.87e5·29-s + 4.25e4·31-s − 1.47e5·33-s − 6.40e4·35-s − 5.44e5·37-s + 2.74e5·39-s + 3.74e5·41-s + 5.40e5·43-s + 9.11e4·45-s − 1.33e6·47-s − 5.61e5·49-s − 2.67e5·51-s + 1.30e6·53-s − 6.82e5·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s − 0.564·7-s + 1/3·9-s − 1.23·11-s + 1.28·13-s + 0.258·15-s − 0.489·17-s + 0.415·19-s − 0.325·21-s − 0.575·23-s + 1/5·25-s + 0.192·27-s − 1.43·29-s + 0.256·31-s − 0.714·33-s − 0.252·35-s − 1.76·37-s + 0.740·39-s + 0.848·41-s + 1.03·43-s + 0.149·45-s − 1.88·47-s − 0.681·49-s − 0.282·51-s + 1.20·53-s − 0.553·55-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(240s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−p3T |
| 5 | 1−p3T |
good | 7 | 1+512T+p7T2 |
| 11 | 1+5460T+p7T2 |
| 13 | 1−782pT+p7T2 |
| 17 | 1+9918T+p7T2 |
| 19 | 1−12436T+p7T2 |
| 23 | 1+33600T+p7T2 |
| 29 | 1+187914T+p7T2 |
| 31 | 1−42592T+p7T2 |
| 37 | 1+544066T+p7T2 |
| 41 | 1−374394T+p7T2 |
| 43 | 1−540532T+p7T2 |
| 47 | 1+1338360T+p7T2 |
| 53 | 1−1308222T+p7T2 |
| 59 | 1+262740T+p7T2 |
| 61 | 1+976330T+p7T2 |
| 67 | 1+3559172T+p7T2 |
| 71 | 1−2673720T+p7T2 |
| 73 | 1+3032134T+p7T2 |
| 79 | 1−5475808T+p7T2 |
| 83 | 1+2231556T+p7T2 |
| 89 | 1+10050678T+p7T2 |
| 97 | 1−5727554T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32737482471637215150734159373, −9.394815471197496491384459784730, −8.498405629393866490786675704120, −7.50797341354544861232999962217, −6.32041948911103452292749135801, −5.32315204527691294066163117124, −3.84622825285153355522476492189, −2.80585642508887432164779339835, −1.61603332443757290603817402412, 0,
1.61603332443757290603817402412, 2.80585642508887432164779339835, 3.84622825285153355522476492189, 5.32315204527691294066163117124, 6.32041948911103452292749135801, 7.50797341354544861232999962217, 8.498405629393866490786675704120, 9.394815471197496491384459784730, 10.32737482471637215150734159373