L(s) = 1 | + (−27.9 − 37.5i)3-s − 125i·5-s + 1.23e3i·7-s + (−628. + 2.09e3i)9-s − 4.91e3·11-s − 7.45e3·13-s + (−4.68e3 + 3.48e3i)15-s + 1.92e4i·17-s − 2.59e4i·19-s + (4.62e4 − 3.44e4i)21-s − 3.33e4·23-s − 1.56e4·25-s + (9.61e4 − 3.49e4i)27-s + 8.13e3i·29-s + 2.00e5i·31-s + ⋯ |
L(s) = 1 | + (−0.596 − 0.802i)3-s − 0.447i·5-s + 1.35i·7-s + (−0.287 + 0.957i)9-s − 1.11·11-s − 0.941·13-s + (−0.358 + 0.266i)15-s + 0.949i·17-s − 0.867i·19-s + (1.09 − 0.811i)21-s − 0.572·23-s − 0.199·25-s + (0.939 − 0.341i)27-s + 0.0619i·29-s + 1.20i·31-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(0.115+0.993i)Λ(8−s)
Λ(s)=(=(240s/2ΓC(s+7/2)L(s)(0.115+0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
0.115+0.993i
|
Analytic conductor: |
74.9724 |
Root analytic conductor: |
8.65866 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :7/2), 0.115+0.993i)
|
Particular Values
L(4) |
≈ |
0.7687060970 |
L(21) |
≈ |
0.7687060970 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(27.9+37.5i)T |
| 5 | 1+125iT |
good | 7 | 1−1.23e3iT−8.23e5T2 |
| 11 | 1+4.91e3T+1.94e7T2 |
| 13 | 1+7.45e3T+6.27e7T2 |
| 17 | 1−1.92e4iT−4.10e8T2 |
| 19 | 1+2.59e4iT−8.93e8T2 |
| 23 | 1+3.33e4T+3.40e9T2 |
| 29 | 1−8.13e3iT−1.72e10T2 |
| 31 | 1−2.00e5iT−2.75e10T2 |
| 37 | 1−4.91e5T+9.49e10T2 |
| 41 | 1+7.75e5iT−1.94e11T2 |
| 43 | 1−9.88e5iT−2.71e11T2 |
| 47 | 1+5.90e5T+5.06e11T2 |
| 53 | 1+1.50e6iT−1.17e12T2 |
| 59 | 1+1.08e6T+2.48e12T2 |
| 61 | 1−1.41e6T+3.14e12T2 |
| 67 | 1+4.00e6iT−6.06e12T2 |
| 71 | 1−2.32e6T+9.09e12T2 |
| 73 | 1−3.70e6T+1.10e13T2 |
| 79 | 1+1.74e3iT−1.92e13T2 |
| 83 | 1+7.56e6T+2.71e13T2 |
| 89 | 1−2.08e6iT−4.42e13T2 |
| 97 | 1+1.45e5T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.84744247238505965595465050729, −9.670288349909910340445934148953, −8.489677012033101993056008635811, −7.78179919868960631990100512159, −6.50638789200227374603559476290, −5.51060871828514936647818216103, −4.84026782981880964226633410968, −2.72614506018246209715855224685, −1.87210814594785999404838488680, −0.29718273090387220190604449493,
0.67567222421103645059693274752, 2.64859517829863484289212316043, 3.91731451564268857038310194081, 4.81451507219215283641177842670, 5.94067566972625134237699127268, 7.16842333407367723538036943247, 7.944994101440147221188236685025, 9.712878158420956583767518271621, 10.08223323535802649606618813117, 10.96235504353082041528754378377