L(s) = 1 | + (−15.4 − 44.1i)3-s + 125i·5-s − 3.33i·7-s + (−1.71e3 + 1.36e3i)9-s − 833.·11-s + 1.22e4·13-s + (5.51e3 − 1.92e3i)15-s − 1.20e4i·17-s − 3.83e4i·19-s + (−147. + 51.4i)21-s − 1.07e5·23-s − 1.56e4·25-s + (8.65e4 + 5.44e4i)27-s + 2.02e5i·29-s − 3.65e4i·31-s + ⋯ |
L(s) = 1 | + (−0.330 − 0.943i)3-s + 0.447i·5-s − 0.00367i·7-s + (−0.782 + 0.623i)9-s − 0.188·11-s + 1.54·13-s + (0.422 − 0.147i)15-s − 0.592i·17-s − 1.28i·19-s + (−0.00346 + 0.00121i)21-s − 1.84·23-s − 0.199·25-s + (0.846 + 0.532i)27-s + 1.54i·29-s − 0.220i·31-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(0.186−0.982i)Λ(8−s)
Λ(s)=(=(240s/2ΓC(s+7/2)L(s)(0.186−0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
0.186−0.982i
|
Analytic conductor: |
74.9724 |
Root analytic conductor: |
8.65866 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :7/2), 0.186−0.982i)
|
Particular Values
L(4) |
≈ |
0.8268748818 |
L(21) |
≈ |
0.8268748818 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(15.4+44.1i)T |
| 5 | 1−125iT |
good | 7 | 1+3.33iT−8.23e5T2 |
| 11 | 1+833.T+1.94e7T2 |
| 13 | 1−1.22e4T+6.27e7T2 |
| 17 | 1+1.20e4iT−4.10e8T2 |
| 19 | 1+3.83e4iT−8.93e8T2 |
| 23 | 1+1.07e5T+3.40e9T2 |
| 29 | 1−2.02e5iT−1.72e10T2 |
| 31 | 1+3.65e4iT−2.75e10T2 |
| 37 | 1+3.38e5T+9.49e10T2 |
| 41 | 1−3.13e5iT−1.94e11T2 |
| 43 | 1+6.19e4iT−2.71e11T2 |
| 47 | 1+9.58e5T+5.06e11T2 |
| 53 | 1+2.57e5iT−1.17e12T2 |
| 59 | 1−1.95e6T+2.48e12T2 |
| 61 | 1+1.08e6T+3.14e12T2 |
| 67 | 1−8.33e5iT−6.06e12T2 |
| 71 | 1−2.51e6T+9.09e12T2 |
| 73 | 1+2.38e6T+1.10e13T2 |
| 79 | 1−4.63e6iT−1.92e13T2 |
| 83 | 1−1.20e6T+2.71e13T2 |
| 89 | 1−3.27e6iT−4.42e13T2 |
| 97 | 1−1.27e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21249895730605933746388869992, −10.38502527133379795050820541609, −8.944545590624697349171498080904, −8.056073751512720466592788160265, −6.97953821321695077082210885762, −6.24157195655739024356887408091, −5.15163830592915466837612061349, −3.53418035884994182907204649710, −2.27958748893752892443783836821, −1.06048637444739748311345784526,
0.22459794957348760514332704490, 1.73813064443906384602850779939, 3.57608390618044859100728184057, 4.22313480415061844759790109959, 5.65554497043317370420790592134, 6.19594867936565473254659271645, 8.050760303146312798480463000711, 8.687303146423792273698868734844, 9.900468515481859755572617096895, 10.50575256440786627547740773015