L(s) = 1 | + (15.4 − 44.1i)3-s − 125i·5-s − 3.33i·7-s + (−1.71e3 − 1.36e3i)9-s + 833.·11-s + 1.22e4·13-s + (−5.51e3 − 1.92e3i)15-s + 1.20e4i·17-s − 3.83e4i·19-s + (−147. − 51.4i)21-s + 1.07e5·23-s − 1.56e4·25-s + (−8.65e4 + 5.44e4i)27-s − 2.02e5i·29-s − 3.65e4i·31-s + ⋯ |
L(s) = 1 | + (0.330 − 0.943i)3-s − 0.447i·5-s − 0.00367i·7-s + (−0.782 − 0.623i)9-s + 0.188·11-s + 1.54·13-s + (−0.422 − 0.147i)15-s + 0.592i·17-s − 1.28i·19-s + (−0.00346 − 0.00121i)21-s + 1.84·23-s − 0.199·25-s + (−0.846 + 0.532i)27-s − 1.54i·29-s − 0.220i·31-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(−0.757+0.652i)Λ(8−s)
Λ(s)=(=(240s/2ΓC(s+7/2)L(s)(−0.757+0.652i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
−0.757+0.652i
|
Analytic conductor: |
74.9724 |
Root analytic conductor: |
8.65866 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :7/2), −0.757+0.652i)
|
Particular Values
L(4) |
≈ |
2.326273890 |
L(21) |
≈ |
2.326273890 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−15.4+44.1i)T |
| 5 | 1+125iT |
good | 7 | 1+3.33iT−8.23e5T2 |
| 11 | 1−833.T+1.94e7T2 |
| 13 | 1−1.22e4T+6.27e7T2 |
| 17 | 1−1.20e4iT−4.10e8T2 |
| 19 | 1+3.83e4iT−8.93e8T2 |
| 23 | 1−1.07e5T+3.40e9T2 |
| 29 | 1+2.02e5iT−1.72e10T2 |
| 31 | 1+3.65e4iT−2.75e10T2 |
| 37 | 1+3.38e5T+9.49e10T2 |
| 41 | 1+3.13e5iT−1.94e11T2 |
| 43 | 1+6.19e4iT−2.71e11T2 |
| 47 | 1−9.58e5T+5.06e11T2 |
| 53 | 1−2.57e5iT−1.17e12T2 |
| 59 | 1+1.95e6T+2.48e12T2 |
| 61 | 1+1.08e6T+3.14e12T2 |
| 67 | 1−8.33e5iT−6.06e12T2 |
| 71 | 1+2.51e6T+9.09e12T2 |
| 73 | 1+2.38e6T+1.10e13T2 |
| 79 | 1−4.63e6iT−1.92e13T2 |
| 83 | 1+1.20e6T+2.71e13T2 |
| 89 | 1+3.27e6iT−4.42e13T2 |
| 97 | 1−1.27e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71427033685788067353754592978, −9.044064026343321003920515265233, −8.712806248453018176396693516113, −7.51559944554271277049552910963, −6.54378513155396122767861945546, −5.57925104285012608957300313987, −4.06485814891392858466579122261, −2.80703069304025603821589794600, −1.46070844261841757809377837132, −0.56137171839748330568801238138,
1.34301237768354099566999306748, 3.00651841134182930881314840640, 3.73231160853729408418532894945, 5.02322351022455597385254714139, 6.09751704092242177844137859060, 7.34705249827500725934720844480, 8.619562568764268986068576919528, 9.195785715667921476670907343591, 10.51667015433800246233103177817, 10.87653922913998762757779473541