Properties

Label 2-240-12.11-c7-0-46
Degree $2$
Conductor $240$
Sign $-0.317 + 0.948i$
Analytic cond. $74.9724$
Root an. cond. $8.65866$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (35.0 − 30.9i)3-s + 125i·5-s + 201. i·7-s + (267. − 2.17e3i)9-s − 499.·11-s + 1.35e3·13-s + (3.87e3 + 4.37e3i)15-s − 1.67e3i·17-s − 1.61e4i·19-s + (6.23e3 + 7.05e3i)21-s − 1.68e4·23-s − 1.56e4·25-s + (−5.78e4 − 8.43e4i)27-s + 8.26e4i·29-s − 1.61e5i·31-s + ⋯
L(s)  = 1  + (0.749 − 0.662i)3-s + 0.447i·5-s + 0.221i·7-s + (0.122 − 0.992i)9-s − 0.113·11-s + 0.171·13-s + (0.296 + 0.335i)15-s − 0.0824i·17-s − 0.539i·19-s + (0.146 + 0.166i)21-s − 0.288·23-s − 0.199·25-s + (−0.565 − 0.824i)27-s + 0.628i·29-s − 0.975i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.317 + 0.948i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.317 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $-0.317 + 0.948i$
Analytic conductor: \(74.9724\)
Root analytic conductor: \(8.65866\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{240} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 240,\ (\ :7/2),\ -0.317 + 0.948i)\)

Particular Values

\(L(4)\) \(\approx\) \(2.182160762\)
\(L(\frac12)\) \(\approx\) \(2.182160762\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-35.0 + 30.9i)T \)
5 \( 1 - 125iT \)
good7 \( 1 - 201. iT - 8.23e5T^{2} \)
11 \( 1 + 499.T + 1.94e7T^{2} \)
13 \( 1 - 1.35e3T + 6.27e7T^{2} \)
17 \( 1 + 1.67e3iT - 4.10e8T^{2} \)
19 \( 1 + 1.61e4iT - 8.93e8T^{2} \)
23 \( 1 + 1.68e4T + 3.40e9T^{2} \)
29 \( 1 - 8.26e4iT - 1.72e10T^{2} \)
31 \( 1 + 1.61e5iT - 2.75e10T^{2} \)
37 \( 1 - 1.28e5T + 9.49e10T^{2} \)
41 \( 1 + 2.74e5iT - 1.94e11T^{2} \)
43 \( 1 + 7.66e5iT - 2.71e11T^{2} \)
47 \( 1 - 5.58e5T + 5.06e11T^{2} \)
53 \( 1 + 1.13e6iT - 1.17e12T^{2} \)
59 \( 1 + 8.80e5T + 2.48e12T^{2} \)
61 \( 1 + 7.56e5T + 3.14e12T^{2} \)
67 \( 1 + 1.60e6iT - 6.06e12T^{2} \)
71 \( 1 - 1.92e6T + 9.09e12T^{2} \)
73 \( 1 + 4.17e6T + 1.10e13T^{2} \)
79 \( 1 - 1.22e6iT - 1.92e13T^{2} \)
83 \( 1 - 1.39e6T + 2.71e13T^{2} \)
89 \( 1 + 3.73e6iT - 4.42e13T^{2} \)
97 \( 1 + 1.25e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.56963881311874958432013967061, −9.439586976093549337596965859836, −8.601185842616798064446427748045, −7.57631741490184507205491738911, −6.76406798340059992355984645633, −5.65274490385765341671781317863, −4.02763295782811136151955882526, −2.88339855313704585410182278525, −1.90898198435224309928038010046, −0.45935378467578438783206655509, 1.29069990088765852215503048955, 2.66039421197466712649565726743, 3.86886562257035419539623235744, 4.76527213165705078194720953847, 5.98847455665653116798337495584, 7.50379197495358909229073653190, 8.326066872531213868968729094637, 9.233956970089979250486431149076, 10.09800345270737123670532323966, 10.95178400766299558999932061600

Graph of the $Z$-function along the critical line