L(s) = 1 | + (35.0 − 30.9i)3-s + 125i·5-s + 201. i·7-s + (267. − 2.17e3i)9-s − 499.·11-s + 1.35e3·13-s + (3.87e3 + 4.37e3i)15-s − 1.67e3i·17-s − 1.61e4i·19-s + (6.23e3 + 7.05e3i)21-s − 1.68e4·23-s − 1.56e4·25-s + (−5.78e4 − 8.43e4i)27-s + 8.26e4i·29-s − 1.61e5i·31-s + ⋯ |
L(s) = 1 | + (0.749 − 0.662i)3-s + 0.447i·5-s + 0.221i·7-s + (0.122 − 0.992i)9-s − 0.113·11-s + 0.171·13-s + (0.296 + 0.335i)15-s − 0.0824i·17-s − 0.539i·19-s + (0.146 + 0.166i)21-s − 0.288·23-s − 0.199·25-s + (−0.565 − 0.824i)27-s + 0.628i·29-s − 0.975i·31-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(−0.317+0.948i)Λ(8−s)
Λ(s)=(=(240s/2ΓC(s+7/2)L(s)(−0.317+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
−0.317+0.948i
|
Analytic conductor: |
74.9724 |
Root analytic conductor: |
8.65866 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :7/2), −0.317+0.948i)
|
Particular Values
L(4) |
≈ |
2.182160762 |
L(21) |
≈ |
2.182160762 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−35.0+30.9i)T |
| 5 | 1−125iT |
good | 7 | 1−201.iT−8.23e5T2 |
| 11 | 1+499.T+1.94e7T2 |
| 13 | 1−1.35e3T+6.27e7T2 |
| 17 | 1+1.67e3iT−4.10e8T2 |
| 19 | 1+1.61e4iT−8.93e8T2 |
| 23 | 1+1.68e4T+3.40e9T2 |
| 29 | 1−8.26e4iT−1.72e10T2 |
| 31 | 1+1.61e5iT−2.75e10T2 |
| 37 | 1−1.28e5T+9.49e10T2 |
| 41 | 1+2.74e5iT−1.94e11T2 |
| 43 | 1+7.66e5iT−2.71e11T2 |
| 47 | 1−5.58e5T+5.06e11T2 |
| 53 | 1+1.13e6iT−1.17e12T2 |
| 59 | 1+8.80e5T+2.48e12T2 |
| 61 | 1+7.56e5T+3.14e12T2 |
| 67 | 1+1.60e6iT−6.06e12T2 |
| 71 | 1−1.92e6T+9.09e12T2 |
| 73 | 1+4.17e6T+1.10e13T2 |
| 79 | 1−1.22e6iT−1.92e13T2 |
| 83 | 1−1.39e6T+2.71e13T2 |
| 89 | 1+3.73e6iT−4.42e13T2 |
| 97 | 1+1.25e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.56963881311874958432013967061, −9.439586976093549337596965859836, −8.601185842616798064446427748045, −7.57631741490184507205491738911, −6.76406798340059992355984645633, −5.65274490385765341671781317863, −4.02763295782811136151955882526, −2.88339855313704585410182278525, −1.90898198435224309928038010046, −0.45935378467578438783206655509,
1.29069990088765852215503048955, 2.66039421197466712649565726743, 3.86886562257035419539623235744, 4.76527213165705078194720953847, 5.98847455665653116798337495584, 7.50379197495358909229073653190, 8.326066872531213868968729094637, 9.233956970089979250486431149076, 10.09800345270737123670532323966, 10.95178400766299558999932061600