L(s) = 1 | + 6·3-s + 21·9-s + 56·27-s + 12·31-s − 8·37-s − 20·41-s − 8·43-s + 6·49-s − 12·53-s + 24·67-s + 8·71-s + 36·79-s + 126·81-s + 32·83-s + 28·89-s + 72·93-s + 40·107-s − 48·111-s + 2·121-s − 120·123-s + 127-s − 48·129-s + 131-s + 137-s + 139-s + 36·147-s + 149-s + ⋯ |
L(s) = 1 | + 3.46·3-s + 7·9-s + 10.7·27-s + 2.15·31-s − 1.31·37-s − 3.12·41-s − 1.21·43-s + 6/7·49-s − 1.64·53-s + 2.93·67-s + 0.949·71-s + 4.05·79-s + 14·81-s + 3.51·83-s + 2.96·89-s + 7.46·93-s + 3.86·107-s − 4.55·111-s + 2/11·121-s − 10.8·123-s + 0.0887·127-s − 4.22·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.96·147-s + 0.0819·149-s + ⋯ |
Λ(s)=(=((230⋅36⋅512)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((230⋅36⋅512)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
40.27011101 |
L(21) |
≈ |
40.27011101 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1−T)6 |
| 5 | 1 |
good | 7 | 1−6T2+47T4−500T6+47p2T8−6p4T10+p6T12 |
| 11 | 1−2T2+87T4+4T6+87p2T8−2p4T10+p6T12 |
| 13 | (1+11T2−16T3+11pT4+p3T6)2 |
| 17 | 1−2pT2+351T4−1084T6+351p2T8−2p5T10+p6T12 |
| 19 | 1−74T2+2647T4−60620T6+2647p2T8−74p4T10+p6T12 |
| 23 | 1−98T2+4527T4−128636T6+4527p2T8−98p4T10+p6T12 |
| 29 | (1−54T2+p2T4)3 |
| 31 | (1−6T+77T2−308T3+77pT4−6p2T5+p3T6)2 |
| 37 | (1+4T+51T2+40T3+51pT4+4p2T5+p3T6)2 |
| 41 | (1+10T+87T2+588T3+87pT4+10p2T5+p3T6)2 |
| 43 | (1+4T+65T2+216T3+65pT4+4p2T5+p3T6)2 |
| 47 | 1−82T2+7967T4−348252T6+7967p2T8−82p4T10+p6T12 |
| 53 | (1+2T+pT2)6 |
| 59 | 1−274T2+33911T4−2503644T6+33911p2T8−274p4T10+p6T12 |
| 61 | 1−110T2+10759T4−685796T6+10759p2T8−110p4T10+p6T12 |
| 67 | (1−4T+pT2)6 |
| 71 | (1−4T+101T2−632T3+101pT4−4p2T5+p3T6)2 |
| 73 | (1−16T+pT2)3(1+16T+pT2)3 |
| 79 | (1−18T+317T2−2908T3+317pT4−18p2T5+p3T6)2 |
| 83 | (1−16T+265T2−2400T3+265pT4−16p2T5+p3T6)2 |
| 89 | (1−14T+263T2−2308T3+263pT4−14p2T5+p3T6)2 |
| 97 | 1−250T2+24143T4−1697004T6+24143p2T8−250p4T10+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.75548612646811221649308172778, −4.56414167715133082915611853668, −4.23828884846416023973063054672, −4.00636078270904823089089889224, −3.95006113287529293088429752837, −3.68607614862327999040566169900, −3.58914634324196703489370340258, −3.58259352866861253422616305858, −3.39856518645524919302969834009, −3.32996823022288471911372854979, −3.29770649476703901681287696962, −2.96919658027631263968802931052, −2.78850816464886513641144076088, −2.49583725700872458240328398898, −2.47695400933385392709423147985, −2.17524481150253556806387924748, −2.16922650646852252975210900009, −2.05236991245424410707104141295, −1.86004755616638252934571693435, −1.64652685770277551560491194768, −1.36528714491591577329387285995, −1.20203360544240795621066385997, −0.75956929801200665649749317828, −0.75908279633423591072970556629, −0.37674848081668442111708560378,
0.37674848081668442111708560378, 0.75908279633423591072970556629, 0.75956929801200665649749317828, 1.20203360544240795621066385997, 1.36528714491591577329387285995, 1.64652685770277551560491194768, 1.86004755616638252934571693435, 2.05236991245424410707104141295, 2.16922650646852252975210900009, 2.17524481150253556806387924748, 2.47695400933385392709423147985, 2.49583725700872458240328398898, 2.78850816464886513641144076088, 2.96919658027631263968802931052, 3.29770649476703901681287696962, 3.32996823022288471911372854979, 3.39856518645524919302969834009, 3.58259352866861253422616305858, 3.58914634324196703489370340258, 3.68607614862327999040566169900, 3.95006113287529293088429752837, 4.00636078270904823089089889224, 4.23828884846416023973063054672, 4.56414167715133082915611853668, 4.75548612646811221649308172778
Plot not available for L-functions of degree greater than 10.