Properties

Label 2-2400-40.29-c1-0-35
Degree $2$
Conductor $2400$
Sign $-0.818 + 0.574i$
Analytic cond. $19.1640$
Root an. cond. $4.37768$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4.68i·7-s + 9-s − 2.29i·11-s − 4.97·13-s − 2.97i·17-s + 2.68i·19-s − 4.68i·21-s + 2.68i·23-s + 27-s − 2i·29-s + 6.97·31-s − 2.29i·33-s − 4.39·37-s − 4.97·39-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.77i·7-s + 0.333·9-s − 0.691i·11-s − 1.38·13-s − 0.722i·17-s + 0.616i·19-s − 1.02i·21-s + 0.560i·23-s + 0.192·27-s − 0.371i·29-s + 1.25·31-s − 0.399i·33-s − 0.722·37-s − 0.797·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.818 + 0.574i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.818 + 0.574i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-0.818 + 0.574i$
Analytic conductor: \(19.1640\)
Root analytic conductor: \(4.37768\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2400} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :1/2),\ -0.818 + 0.574i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.299267800\)
\(L(\frac12)\) \(\approx\) \(1.299267800\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 + 4.68iT - 7T^{2} \)
11 \( 1 + 2.29iT - 11T^{2} \)
13 \( 1 + 4.97T + 13T^{2} \)
17 \( 1 + 2.97iT - 17T^{2} \)
19 \( 1 - 2.68iT - 19T^{2} \)
23 \( 1 - 2.68iT - 23T^{2} \)
29 \( 1 + 2iT - 29T^{2} \)
31 \( 1 - 6.97T + 31T^{2} \)
37 \( 1 + 4.39T + 37T^{2} \)
41 \( 1 + 11.3T + 41T^{2} \)
43 \( 1 + 9.37T + 43T^{2} \)
47 \( 1 + 7.27iT - 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 1.70iT - 59T^{2} \)
61 \( 1 - 4.58iT - 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 + 0.585T + 71T^{2} \)
73 \( 1 - 6iT - 73T^{2} \)
79 \( 1 - 1.02T + 79T^{2} \)
83 \( 1 - 13.3T + 83T^{2} \)
89 \( 1 + 3.37T + 89T^{2} \)
97 \( 1 + 3.95iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.456451703298556878211931864397, −7.911490432516477481752008925124, −7.09851664667425053076451978662, −6.70908162748921289147044402792, −5.32441083380088521377280602965, −4.56414167715133082915611853668, −3.68607614862327999040566169900, −2.96919658027631263968802931052, −1.64652685770277551560491194768, −0.37674848081668442111708560378, 1.86004755616638252934571693435, 2.49583725700872458240328398898, 3.32996823022288471911372854979, 4.78261303103634913302310500543, 5.07403073849512085859444342013, 6.29228541305181856156608583893, 6.90669624517654936236125367643, 7.973916564848626908365903408775, 8.499524715562551454341702302506, 9.239743367561222786025352361069

Graph of the $Z$-function along the critical line