Properties

Label 2-2400-40.29-c1-0-28
Degree $2$
Conductor $2400$
Sign $0.606 + 0.794i$
Analytic cond. $19.1640$
Root an. cond. $4.37768$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 0.941i·7-s + 9-s − 4.49i·11-s + 5.55·13-s − 7.55i·17-s + 1.05i·19-s + 0.941i·21-s + 1.05i·23-s + 27-s + 2i·29-s − 3.55·31-s − 4.49i·33-s − 7.43·37-s + 5.55·39-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.355i·7-s + 0.333·9-s − 1.35i·11-s + 1.54·13-s − 1.83i·17-s + 0.242i·19-s + 0.205i·21-s + 0.220i·23-s + 0.192·27-s + 0.371i·29-s − 0.638·31-s − 0.783i·33-s − 1.22·37-s + 0.889·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $0.606 + 0.794i$
Analytic conductor: \(19.1640\)
Root analytic conductor: \(4.37768\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2400} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :1/2),\ 0.606 + 0.794i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.263161558\)
\(L(\frac12)\) \(\approx\) \(2.263161558\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 - 0.941iT - 7T^{2} \)
11 \( 1 + 4.49iT - 11T^{2} \)
13 \( 1 - 5.55T + 13T^{2} \)
17 \( 1 + 7.55iT - 17T^{2} \)
19 \( 1 - 1.05iT - 19T^{2} \)
23 \( 1 - 1.05iT - 23T^{2} \)
29 \( 1 - 2iT - 29T^{2} \)
31 \( 1 + 3.55T + 31T^{2} \)
37 \( 1 + 7.43T + 37T^{2} \)
41 \( 1 + 3.88T + 41T^{2} \)
43 \( 1 + 1.88T + 43T^{2} \)
47 \( 1 + 10.0iT - 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 + 8.49iT - 59T^{2} \)
61 \( 1 - 8.99iT - 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 - 12.9T + 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 - 11.5T + 79T^{2} \)
83 \( 1 - 5.88T + 83T^{2} \)
89 \( 1 - 4.11T + 89T^{2} \)
97 \( 1 + 17.1iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.738519681500098348332404805979, −8.357130189427668794288567852544, −7.34976509347759265874039864533, −6.57049953000727198155915988785, −5.68303422865833318385383979087, −4.99908492486562611148322788205, −3.58914634324196703489370340258, −3.29770649476703901681287696962, −2.05236991245424410707104141295, −0.75956929801200665649749317828, 1.36528714491591577329387285995, 2.16922650646852252975210900009, 3.58259352866861253422616305858, 4.00636078270904823089089889224, 5.01558600988631020394020957032, 6.14446201947570414896676947317, 6.75390879726032345461048178176, 7.66992977124106132448375118591, 8.318365851761539996503590720279, 8.980833175997487257980876594758

Graph of the $Z$-function along the critical line