L(s) = 1 | + 3-s + 0.941i·7-s + 9-s − 4.49i·11-s + 5.55·13-s − 7.55i·17-s + 1.05i·19-s + 0.941i·21-s + 1.05i·23-s + 27-s + 2i·29-s − 3.55·31-s − 4.49i·33-s − 7.43·37-s + 5.55·39-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.355i·7-s + 0.333·9-s − 1.35i·11-s + 1.54·13-s − 1.83i·17-s + 0.242i·19-s + 0.205i·21-s + 0.220i·23-s + 0.192·27-s + 0.371i·29-s − 0.638·31-s − 0.783i·33-s − 1.22·37-s + 0.889·39-s + ⋯ |
Λ(s)=(=(2400s/2ΓC(s)L(s)(0.606+0.794i)Λ(2−s)
Λ(s)=(=(2400s/2ΓC(s+1/2)L(s)(0.606+0.794i)Λ(1−s)
Degree: |
2 |
Conductor: |
2400
= 25⋅3⋅52
|
Sign: |
0.606+0.794i
|
Analytic conductor: |
19.1640 |
Root analytic conductor: |
4.37768 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2400(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2400, ( :1/2), 0.606+0.794i)
|
Particular Values
L(1) |
≈ |
2.263161558 |
L(21) |
≈ |
2.263161558 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1 |
good | 7 | 1−0.941iT−7T2 |
| 11 | 1+4.49iT−11T2 |
| 13 | 1−5.55T+13T2 |
| 17 | 1+7.55iT−17T2 |
| 19 | 1−1.05iT−19T2 |
| 23 | 1−1.05iT−23T2 |
| 29 | 1−2iT−29T2 |
| 31 | 1+3.55T+31T2 |
| 37 | 1+7.43T+37T2 |
| 41 | 1+3.88T+41T2 |
| 43 | 1+1.88T+43T2 |
| 47 | 1+10.0iT−47T2 |
| 53 | 1+2T+53T2 |
| 59 | 1+8.49iT−59T2 |
| 61 | 1−8.99iT−61T2 |
| 67 | 1−4T+67T2 |
| 71 | 1−12.9T+71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1−11.5T+79T2 |
| 83 | 1−5.88T+83T2 |
| 89 | 1−4.11T+89T2 |
| 97 | 1+17.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.738519681500098348332404805979, −8.357130189427668794288567852544, −7.34976509347759265874039864533, −6.57049953000727198155915988785, −5.68303422865833318385383979087, −4.99908492486562611148322788205, −3.58914634324196703489370340258, −3.29770649476703901681287696962, −2.05236991245424410707104141295, −0.75956929801200665649749317828,
1.36528714491591577329387285995, 2.16922650646852252975210900009, 3.58259352866861253422616305858, 4.00636078270904823089089889224, 5.01558600988631020394020957032, 6.14446201947570414896676947317, 6.75390879726032345461048178176, 7.66992977124106132448375118591, 8.318365851761539996503590720279, 8.980833175997487257980876594758