L(s) = 1 | + (−0.707 − 0.707i)3-s + (0.0249 − 0.0249i)7-s + 1.00i·9-s − 1.86i·11-s + (−0.189 + 0.189i)13-s + (4.14 + 4.14i)17-s − 4.13·19-s − 0.0352·21-s + (3.18 + 3.18i)23-s + (0.707 − 0.707i)27-s − 2.42i·29-s − 3.52i·31-s + (−1.31 + 1.31i)33-s + (2.63 + 2.63i)37-s + 0.267·39-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (0.00942 − 0.00942i)7-s + 0.333i·9-s − 0.561i·11-s + (−0.0525 + 0.0525i)13-s + (1.00 + 1.00i)17-s − 0.947·19-s − 0.00769·21-s + (0.663 + 0.663i)23-s + (0.136 − 0.136i)27-s − 0.451i·29-s − 0.633i·31-s + (−0.229 + 0.229i)33-s + (0.433 + 0.433i)37-s + 0.0429·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.484298229\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.484298229\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.0249 + 0.0249i)T - 7iT^{2} \) |
| 11 | \( 1 + 1.86iT - 11T^{2} \) |
| 13 | \( 1 + (0.189 - 0.189i)T - 13iT^{2} \) |
| 17 | \( 1 + (-4.14 - 4.14i)T + 17iT^{2} \) |
| 19 | \( 1 + 4.13T + 19T^{2} \) |
| 23 | \( 1 + (-3.18 - 3.18i)T + 23iT^{2} \) |
| 29 | \( 1 + 2.42iT - 29T^{2} \) |
| 31 | \( 1 + 3.52iT - 31T^{2} \) |
| 37 | \( 1 + (-2.63 - 2.63i)T + 37iT^{2} \) |
| 41 | \( 1 + 0.842T + 41T^{2} \) |
| 43 | \( 1 + (-4.40 - 4.40i)T + 43iT^{2} \) |
| 47 | \( 1 + (-2.87 + 2.87i)T - 47iT^{2} \) |
| 53 | \( 1 + (5.23 - 5.23i)T - 53iT^{2} \) |
| 59 | \( 1 + 3.46T + 59T^{2} \) |
| 61 | \( 1 - 13.8T + 61T^{2} \) |
| 67 | \( 1 + (-7.93 + 7.93i)T - 67iT^{2} \) |
| 71 | \( 1 + 12.0iT - 71T^{2} \) |
| 73 | \( 1 + (-2.53 + 2.53i)T - 73iT^{2} \) |
| 79 | \( 1 + 0.263T + 79T^{2} \) |
| 83 | \( 1 + (4.84 + 4.84i)T + 83iT^{2} \) |
| 89 | \( 1 - 4.85iT - 89T^{2} \) |
| 97 | \( 1 + (-12.2 - 12.2i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.892962326984633342190600220473, −8.008444668335127478830688565162, −7.56538763298692337604910815735, −6.40198064843006564101508679634, −6.01340363071943851362184591116, −5.10643272556729571163587715786, −4.11830390041821246116268190224, −3.17900413131033015185318169789, −2.00165385144991782911911560968, −0.858556758410327544473927499676,
0.75475172722960705110471459503, 2.22610130884078989779526642197, 3.27797056066519587871689020356, 4.26983299763179797485858318326, 5.04065257898307107729653057310, 5.70621331117393469218280553303, 6.77364190874391704319781545808, 7.25920928493887374279782073423, 8.328950202072422353641769827618, 9.003267215328959812835733052465