L(s) = 1 | + (0.707 + 0.707i)3-s + (−2.02 + 2.02i)7-s + 1.00i·9-s + 0.964i·11-s + (2.63 − 2.63i)13-s + (−2.14 − 2.14i)17-s − 4.76·19-s − 2.86·21-s + (−0.282 − 0.282i)23-s + (−0.707 + 0.707i)27-s + 7.32i·29-s + 8.42i·31-s + (−0.682 + 0.682i)33-s + (1.36 + 1.36i)37-s + 3.73·39-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (−0.765 + 0.765i)7-s + 0.333i·9-s + 0.290i·11-s + (0.731 − 0.731i)13-s + (−0.520 − 0.520i)17-s − 1.09·19-s − 0.624·21-s + (−0.0589 − 0.0589i)23-s + (−0.136 + 0.136i)27-s + 1.36i·29-s + 1.51i·31-s + (−0.118 + 0.118i)33-s + (0.224 + 0.224i)37-s + 0.597·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7062332081\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7062332081\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (2.02 - 2.02i)T - 7iT^{2} \) |
| 11 | \( 1 - 0.964iT - 11T^{2} \) |
| 13 | \( 1 + (-2.63 + 2.63i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.14 + 2.14i)T + 17iT^{2} \) |
| 19 | \( 1 + 4.76T + 19T^{2} \) |
| 23 | \( 1 + (0.282 + 0.282i)T + 23iT^{2} \) |
| 29 | \( 1 - 7.32iT - 29T^{2} \) |
| 31 | \( 1 - 8.42iT - 31T^{2} \) |
| 37 | \( 1 + (-1.36 - 1.36i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.05T + 41T^{2} \) |
| 43 | \( 1 + (3.30 + 3.30i)T + 43iT^{2} \) |
| 47 | \( 1 + (6.87 - 6.87i)T - 47iT^{2} \) |
| 53 | \( 1 + (-2.33 + 2.33i)T - 53iT^{2} \) |
| 59 | \( 1 - 3.46T + 59T^{2} \) |
| 61 | \( 1 + 10.0T + 61T^{2} \) |
| 67 | \( 1 + (1.03 - 1.03i)T - 67iT^{2} \) |
| 71 | \( 1 + 4.84iT - 71T^{2} \) |
| 73 | \( 1 + (-9.46 + 9.46i)T - 73iT^{2} \) |
| 79 | \( 1 + 1.53T + 79T^{2} \) |
| 83 | \( 1 + (8.94 + 8.94i)T + 83iT^{2} \) |
| 89 | \( 1 + 14.6iT - 89T^{2} \) |
| 97 | \( 1 + (12.9 + 12.9i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.075692911774527517601295789663, −8.790012772188535212258138442363, −8.001273395835578725685563975833, −6.88618424854730008256113236119, −6.31395789729769780672516122189, −5.32921761478336798586435347675, −4.59937707438846817650121573658, −3.41813593921029777193724873081, −2.90069145972635517668449129075, −1.69964366618341123307539013129,
0.21140346300141796310424419735, 1.64255048184072407007492528554, 2.66251695133382490687076111757, 3.90035875956253628140548233122, 4.14994990411516912442653744476, 5.66017231576582676832195741829, 6.62655361432007238618799628949, 6.73282387504055379830164940130, 8.042072091712760332627982495037, 8.395807212334225622155433199777