L(s) = 1 | + (−0.707 + 0.707i)3-s + (2.02 + 2.02i)7-s − 1.00i·9-s + 0.964i·11-s + (2.63 + 2.63i)13-s + (−2.14 + 2.14i)17-s + 4.76·19-s − 2.86·21-s + (0.282 − 0.282i)23-s + (0.707 + 0.707i)27-s − 7.32i·29-s + 8.42i·31-s + (−0.682 − 0.682i)33-s + (1.36 − 1.36i)37-s − 3.73·39-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + (0.765 + 0.765i)7-s − 0.333i·9-s + 0.290i·11-s + (0.731 + 0.731i)13-s + (−0.520 + 0.520i)17-s + 1.09·19-s − 0.624·21-s + (0.0589 − 0.0589i)23-s + (0.136 + 0.136i)27-s − 1.36i·29-s + 1.51i·31-s + (−0.118 − 0.118i)33-s + (0.224 − 0.224i)37-s − 0.597·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.130 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.627724545\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.627724545\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-2.02 - 2.02i)T + 7iT^{2} \) |
| 11 | \( 1 - 0.964iT - 11T^{2} \) |
| 13 | \( 1 + (-2.63 - 2.63i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.14 - 2.14i)T - 17iT^{2} \) |
| 19 | \( 1 - 4.76T + 19T^{2} \) |
| 23 | \( 1 + (-0.282 + 0.282i)T - 23iT^{2} \) |
| 29 | \( 1 + 7.32iT - 29T^{2} \) |
| 31 | \( 1 - 8.42iT - 31T^{2} \) |
| 37 | \( 1 + (-1.36 + 1.36i)T - 37iT^{2} \) |
| 41 | \( 1 + 8.05T + 41T^{2} \) |
| 43 | \( 1 + (-3.30 + 3.30i)T - 43iT^{2} \) |
| 47 | \( 1 + (-6.87 - 6.87i)T + 47iT^{2} \) |
| 53 | \( 1 + (-2.33 - 2.33i)T + 53iT^{2} \) |
| 59 | \( 1 + 3.46T + 59T^{2} \) |
| 61 | \( 1 + 10.0T + 61T^{2} \) |
| 67 | \( 1 + (-1.03 - 1.03i)T + 67iT^{2} \) |
| 71 | \( 1 + 4.84iT - 71T^{2} \) |
| 73 | \( 1 + (-9.46 - 9.46i)T + 73iT^{2} \) |
| 79 | \( 1 - 1.53T + 79T^{2} \) |
| 83 | \( 1 + (-8.94 + 8.94i)T - 83iT^{2} \) |
| 89 | \( 1 - 14.6iT - 89T^{2} \) |
| 97 | \( 1 + (12.9 - 12.9i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.109587388002207415374009567479, −8.550952667959818104051293788125, −7.70425837922569864256303251298, −6.73759246670143191613353210760, −5.97692606764130842918892222319, −5.21161474048947243602878521462, −4.47940038245523229359706844162, −3.60392714401025432454597340674, −2.36400833668687167739956217479, −1.31262761546102251774001525416,
0.64744500825669445950105949114, 1.58569273204174491172202506610, 2.93897484548196531075279406672, 3.92013008955854510557077856690, 4.91907921185091403721945142420, 5.56466683135946266536578811109, 6.47136532343833537503725324418, 7.33013673728692828173426650045, 7.83308326497093113914055202504, 8.629390689930910837817631360448