Properties

Label 2-2400-1.1-c3-0-96
Degree $2$
Conductor $2400$
Sign $-1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 16·7-s + 9·9-s + 24·11-s + 14·13-s + 18·17-s + 36·19-s − 48·21-s − 104·23-s + 27·27-s − 250·29-s − 28·31-s + 72·33-s + 54·37-s + 42·39-s + 354·41-s − 228·43-s − 408·47-s − 87·49-s + 54·51-s − 262·53-s + 108·57-s − 64·59-s + 374·61-s − 144·63-s − 300·67-s − 312·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.863·7-s + 1/3·9-s + 0.657·11-s + 0.298·13-s + 0.256·17-s + 0.434·19-s − 0.498·21-s − 0.942·23-s + 0.192·27-s − 1.60·29-s − 0.162·31-s + 0.379·33-s + 0.239·37-s + 0.172·39-s + 1.34·41-s − 0.808·43-s − 1.26·47-s − 0.253·49-s + 0.148·51-s − 0.679·53-s + 0.250·57-s − 0.141·59-s + 0.785·61-s − 0.287·63-s − 0.547·67-s − 0.544·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 \)
good7 \( 1 + 16 T + p^{3} T^{2} \)
11 \( 1 - 24 T + p^{3} T^{2} \)
13 \( 1 - 14 T + p^{3} T^{2} \)
17 \( 1 - 18 T + p^{3} T^{2} \)
19 \( 1 - 36 T + p^{3} T^{2} \)
23 \( 1 + 104 T + p^{3} T^{2} \)
29 \( 1 + 250 T + p^{3} T^{2} \)
31 \( 1 + 28 T + p^{3} T^{2} \)
37 \( 1 - 54 T + p^{3} T^{2} \)
41 \( 1 - 354 T + p^{3} T^{2} \)
43 \( 1 + 228 T + p^{3} T^{2} \)
47 \( 1 + 408 T + p^{3} T^{2} \)
53 \( 1 + 262 T + p^{3} T^{2} \)
59 \( 1 + 64 T + p^{3} T^{2} \)
61 \( 1 - 374 T + p^{3} T^{2} \)
67 \( 1 + 300 T + p^{3} T^{2} \)
71 \( 1 - 1016 T + p^{3} T^{2} \)
73 \( 1 + 274 T + p^{3} T^{2} \)
79 \( 1 - 788 T + p^{3} T^{2} \)
83 \( 1 - 396 T + p^{3} T^{2} \)
89 \( 1 - 786 T + p^{3} T^{2} \)
97 \( 1 - 1086 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.159668433281619779180812148575, −7.58353796403289798981957866432, −6.62953575573381251002114662900, −6.06418783944700619007387406110, −5.04921019975582846922510353985, −3.85197864762603733614338465303, −3.46827251064966672144131187908, −2.34738798446449786263077167333, −1.31886441216474891540001272383, 0, 1.31886441216474891540001272383, 2.34738798446449786263077167333, 3.46827251064966672144131187908, 3.85197864762603733614338465303, 5.04921019975582846922510353985, 6.06418783944700619007387406110, 6.62953575573381251002114662900, 7.58353796403289798981957866432, 8.159668433281619779180812148575

Graph of the $Z$-function along the critical line