Properties

Label 2-2400-1.1-c3-0-94
Degree $2$
Conductor $2400$
Sign $-1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 8·7-s + 9·9-s − 4·11-s + 6·13-s + 2·17-s + 16·19-s − 24·21-s − 60·23-s + 27·27-s − 142·29-s + 176·31-s − 12·33-s + 214·37-s + 18·39-s − 278·41-s − 68·43-s + 116·47-s − 279·49-s + 6·51-s + 350·53-s + 48·57-s − 684·59-s − 394·61-s − 72·63-s + 108·67-s − 180·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.431·7-s + 1/3·9-s − 0.109·11-s + 0.128·13-s + 0.0285·17-s + 0.193·19-s − 0.249·21-s − 0.543·23-s + 0.192·27-s − 0.909·29-s + 1.01·31-s − 0.0633·33-s + 0.950·37-s + 0.0739·39-s − 1.05·41-s − 0.241·43-s + 0.360·47-s − 0.813·49-s + 0.0164·51-s + 0.907·53-s + 0.111·57-s − 1.50·59-s − 0.826·61-s − 0.143·63-s + 0.196·67-s − 0.314·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 \)
good7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 + 4 T + p^{3} T^{2} \)
13 \( 1 - 6 T + p^{3} T^{2} \)
17 \( 1 - 2 T + p^{3} T^{2} \)
19 \( 1 - 16 T + p^{3} T^{2} \)
23 \( 1 + 60 T + p^{3} T^{2} \)
29 \( 1 + 142 T + p^{3} T^{2} \)
31 \( 1 - 176 T + p^{3} T^{2} \)
37 \( 1 - 214 T + p^{3} T^{2} \)
41 \( 1 + 278 T + p^{3} T^{2} \)
43 \( 1 + 68 T + p^{3} T^{2} \)
47 \( 1 - 116 T + p^{3} T^{2} \)
53 \( 1 - 350 T + p^{3} T^{2} \)
59 \( 1 + 684 T + p^{3} T^{2} \)
61 \( 1 + 394 T + p^{3} T^{2} \)
67 \( 1 - 108 T + p^{3} T^{2} \)
71 \( 1 - 96 T + p^{3} T^{2} \)
73 \( 1 - 398 T + p^{3} T^{2} \)
79 \( 1 + 136 T + p^{3} T^{2} \)
83 \( 1 - 436 T + p^{3} T^{2} \)
89 \( 1 + 750 T + p^{3} T^{2} \)
97 \( 1 + 82 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.182693680591538666959096617752, −7.60676236115966867735900060715, −6.69316860285617402076303082902, −5.99278568986096849768324695264, −4.99816187385205939099420184439, −4.06896616518560573632059141234, −3.26098754478655631189795926997, −2.40186957324362766207447646118, −1.31761933060326068687825865592, 0, 1.31761933060326068687825865592, 2.40186957324362766207447646118, 3.26098754478655631189795926997, 4.06896616518560573632059141234, 4.99816187385205939099420184439, 5.99278568986096849768324695264, 6.69316860285617402076303082902, 7.60676236115966867735900060715, 8.182693680591538666959096617752

Graph of the $Z$-function along the critical line