L(s) = 1 | + (0.866 − 0.5i)2-s + (2.44 + 1.41i)3-s + (−0.500 + 0.866i)4-s + (−0.448 − 2.19i)5-s + 2.82·6-s + 3i·8-s + (2.49 + 4.33i)9-s + (−1.48 − 1.67i)10-s + (−2.44 + 1.41i)12-s − 4.24i·13-s + (2 − 5.99i)15-s + (0.500 + 0.866i)16-s + (−3.67 − 2.12i)17-s + (4.33 + 2.5i)18-s + (1.41 + 2.44i)19-s + (2.12 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (1.41 + 0.816i)3-s + (−0.250 + 0.433i)4-s + (−0.200 − 0.979i)5-s + 1.15·6-s + 1.06i·8-s + (0.833 + 1.44i)9-s + (−0.469 − 0.529i)10-s + (−0.707 + 0.408i)12-s − 1.17i·13-s + (0.516 − 1.54i)15-s + (0.125 + 0.216i)16-s + (−0.891 − 0.514i)17-s + (1.02 + 0.589i)18-s + (0.324 + 0.561i)19-s + (0.474 + 0.158i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.271i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.962 - 0.271i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.20239 + 0.304163i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.20239 + 0.304163i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.448 + 2.19i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-2.44 - 1.41i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 4.24iT - 13T^{2} \) |
| 17 | \( 1 + (3.67 + 2.12i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.41 - 2.44i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.46 - 2i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (-2.82 + 4.89i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.19 + 3i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 4.24T + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.92 + 4i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.24 - 7.34i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.94 - 8.57i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.3 - 6i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + (11.0 + 6.36i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6 - 10.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.48iT - 83T^{2} \) |
| 89 | \( 1 + (-2.12 - 3.67i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 4.24iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.37977353988219624470065449624, −11.33265278059940207005371497732, −9.969479765436604935495522424797, −9.169864961539175430110744365320, −8.259211887974300560475467237654, −7.79854165026498520128286149769, −5.44412810668871832723278910550, −4.40802441655419873847173313642, −3.63532866849199310705853611054, −2.46762104220079143664097961321,
1.99296762216752513172282824167, 3.35755073767409733152042992505, 4.48810055562412327469329330369, 6.43064286418123012046063774365, 6.82698723276605308888962268806, 7.994189159490589946696554177023, 9.042500187070389005217891172872, 9.922935020890104483901921803551, 11.17101314588107632546454601131, 12.41648181675204245904693330597