L(s) = 1 | + (1.45 − 0.837i)2-s + (2.15 + 1.24i)3-s + (−2.59 + 4.49i)4-s + (4.78 − 10.1i)5-s + 4.17·6-s + 22.1i·8-s + (−10.3 − 17.9i)9-s + (−1.51 − 18.6i)10-s + (28.7 − 49.8i)11-s + (−11.2 + 6.47i)12-s − 45.5i·13-s + (22.9 − 15.8i)15-s + (−2.26 − 3.92i)16-s + (79.6 + 46.0i)17-s + (−30.1 − 17.4i)18-s + (62.5 + 108. i)19-s + ⋯ |
L(s) = 1 | + (0.512 − 0.296i)2-s + (0.415 + 0.239i)3-s + (−0.324 + 0.562i)4-s + (0.428 − 0.903i)5-s + 0.284·6-s + 0.976i·8-s + (−0.384 − 0.666i)9-s + (−0.0479 − 0.590i)10-s + (0.789 − 1.36i)11-s + (−0.269 + 0.155i)12-s − 0.971i·13-s + (0.394 − 0.272i)15-s + (−0.0353 − 0.0612i)16-s + (1.13 + 0.656i)17-s + (−0.394 − 0.227i)18-s + (0.755 + 1.30i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.667 + 0.744i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.667 + 0.744i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.44720 - 1.09207i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.44720 - 1.09207i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-4.78 + 10.1i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-1.45 + 0.837i)T + (4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (-2.15 - 1.24i)T + (13.5 + 23.3i)T^{2} \) |
| 11 | \( 1 + (-28.7 + 49.8i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 45.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-79.6 - 46.0i)T + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-62.5 - 108. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-137. + 79.2i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 40.1T + 2.43e4T^{2} \) |
| 31 | \( 1 + (24.7 - 42.9i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (200. - 115. i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 169.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 147. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (-58.0 + 33.5i)T + (5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (232. + 134. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (120. - 208. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (45.2 + 78.3i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (352. + 203. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 330.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (473. + 273. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (12.6 + 21.9i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 376. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-513. - 888. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 942. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.96344431339331523815046517407, −10.60145672215465598262804560839, −9.377376374471017246610397772804, −8.590772902364836395411477046733, −8.009131886107840065061701142645, −6.04760326659453365637006189977, −5.24317069745064905644209821283, −3.75647082007332444859834077646, −3.12031977833334641411310014969, −0.997774399470299670451578348507,
1.59606316268852866908923215998, 3.04556537787732797407212134110, 4.58594460230606103138947632546, 5.56188124252649781475712308589, 6.93685537192182731156482727226, 7.30345354681160537480336113149, 9.243990223883306917782056835210, 9.594456010435997093893190263379, 10.82180316573036571675443211191, 11.78668142555297375959010503112