Properties

Label 2-2475-1.1-c1-0-48
Degree $2$
Conductor $2475$
Sign $1$
Analytic cond. $19.7629$
Root an. cond. $4.44555$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.67·2-s + 5.15·4-s − 2.80·7-s + 8.44·8-s + 11-s + 5.11·13-s − 7.50·14-s + 12.2·16-s + 4.54·17-s − 4.57·19-s + 2.67·22-s + 4·23-s + 13.6·26-s − 14.4·28-s + 2.38·29-s − 0.962·31-s + 15.9·32-s + 12.1·34-s − 1.61·37-s − 12.2·38-s + 2.38·41-s − 2.80·43-s + 5.15·44-s + 10.7·46-s − 4.31·47-s + 0.873·49-s + 26.3·52-s + ⋯
L(s)  = 1  + 1.89·2-s + 2.57·4-s − 1.06·7-s + 2.98·8-s + 0.301·11-s + 1.41·13-s − 2.00·14-s + 3.06·16-s + 1.10·17-s − 1.04·19-s + 0.570·22-s + 0.834·23-s + 2.68·26-s − 2.73·28-s + 0.443·29-s − 0.172·31-s + 2.81·32-s + 2.08·34-s − 0.265·37-s − 1.98·38-s + 0.372·41-s − 0.427·43-s + 0.777·44-s + 1.57·46-s − 0.629·47-s + 0.124·49-s + 3.66·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2475\)    =    \(3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(19.7629\)
Root analytic conductor: \(4.44555\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2475,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.141399916\)
\(L(\frac12)\) \(\approx\) \(6.141399916\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good2 \( 1 - 2.67T + 2T^{2} \)
7 \( 1 + 2.80T + 7T^{2} \)
13 \( 1 - 5.11T + 13T^{2} \)
17 \( 1 - 4.54T + 17T^{2} \)
19 \( 1 + 4.57T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 - 2.38T + 29T^{2} \)
31 \( 1 + 0.962T + 31T^{2} \)
37 \( 1 + 1.61T + 37T^{2} \)
41 \( 1 - 2.38T + 41T^{2} \)
43 \( 1 + 2.80T + 43T^{2} \)
47 \( 1 + 4.31T + 47T^{2} \)
53 \( 1 + 6.57T + 53T^{2} \)
59 \( 1 - 13.2T + 59T^{2} \)
61 \( 1 - 7.92T + 61T^{2} \)
67 \( 1 + 10.7T + 67T^{2} \)
71 \( 1 - 7.35T + 71T^{2} \)
73 \( 1 + 6.41T + 73T^{2} \)
79 \( 1 - 1.35T + 79T^{2} \)
83 \( 1 + 0.806T + 83T^{2} \)
89 \( 1 - 2.96T + 89T^{2} \)
97 \( 1 - 9.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.857846498097446685269635268276, −7.921750100089480391720263638626, −6.84540100021831471455704906482, −6.43844244304904878367628584796, −5.79306765203612391501947305796, −4.98202639714813758689288300376, −3.92729288341920008085240274453, −3.47997674795130572765919602868, −2.66465030038503452559749227258, −1.36397059200448912322557757740, 1.36397059200448912322557757740, 2.66465030038503452559749227258, 3.47997674795130572765919602868, 3.92729288341920008085240274453, 4.98202639714813758689288300376, 5.79306765203612391501947305796, 6.43844244304904878367628584796, 6.84540100021831471455704906482, 7.921750100089480391720263638626, 8.857846498097446685269635268276

Graph of the $Z$-function along the critical line