L(s) = 1 | − 3·2-s + 4·4-s + 8·7-s − 4·8-s + 3·11-s + 6·13-s − 24·14-s + 3·16-s − 4·17-s − 2·19-s − 9·22-s − 12·23-s − 18·26-s + 32·28-s + 8·29-s + 8·31-s + 32-s + 12·34-s + 4·37-s + 6·38-s + 8·41-s + 8·43-s + 12·44-s + 36·46-s − 8·47-s + 27·49-s + 24·52-s + ⋯ |
L(s) = 1 | − 2.12·2-s + 2·4-s + 3.02·7-s − 1.41·8-s + 0.904·11-s + 1.66·13-s − 6.41·14-s + 3/4·16-s − 0.970·17-s − 0.458·19-s − 1.91·22-s − 2.50·23-s − 3.53·26-s + 6.04·28-s + 1.48·29-s + 1.43·31-s + 0.176·32-s + 2.05·34-s + 0.657·37-s + 0.973·38-s + 1.24·41-s + 1.21·43-s + 1.80·44-s + 5.30·46-s − 1.16·47-s + 27/7·49-s + 3.32·52-s + ⋯ |
Λ(s)=(=((36⋅56⋅113)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((36⋅56⋅113)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
36⋅56⋅113
|
Sign: |
1
|
Analytic conductor: |
7718.92 |
Root analytic conductor: |
4.44555 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 36⋅56⋅113, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.208530079 |
L(21) |
≈ |
2.208530079 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | | 1 |
| 11 | C1 | (1−T)3 |
good | 2 | S4×C2 | 1+3T+5T2+7T3+5pT4+3p2T5+p3T6 |
| 7 | S4×C2 | 1−8T+37T2−116T3+37pT4−8p2T5+p3T6 |
| 13 | S4×C2 | 1−6T+11T2−8T3+11pT4−6p2T5+p3T6 |
| 17 | S4×C2 | 1+4T+23T2+20T3+23pT4+4p2T5+p3T6 |
| 19 | S4×C2 | 1+2T+5T2−108T3+5pT4+2p2T5+p3T6 |
| 23 | C2 | (1+4T+pT2)3 |
| 29 | S4×C2 | 1−8T+3pT2−432T3+3p2T4−8p2T5+p3T6 |
| 31 | S4×C2 | 1−8T+101T2−480T3+101pT4−8p2T5+p3T6 |
| 37 | S4×C2 | 1−4T+95T2−264T3+95pT4−4p2T5+p3T6 |
| 41 | S4×C2 | 1−8T+3pT2−624T3+3p2T4−8p2T5+p3T6 |
| 43 | S4×C2 | 1−8T+145T2−692T3+145pT4−8p2T5+p3T6 |
| 47 | S4×C2 | 1+8T+125T2+592T3+125pT4+8p2T5+p3T6 |
| 53 | S4×C2 | 1−8T+127T2−576T3+127pT4−8p2T5+p3T6 |
| 59 | S4×C2 | 1−8T+113T2−1024T3+113pT4−8p2T5+p3T6 |
| 61 | S4×C2 | 1−2T+131T2−204T3+131pT4−2p2T5+p3T6 |
| 67 | S4×C2 | 1−12T+185T2−1288T3+185pT4−12p2T5+p3T6 |
| 71 | S4×C2 | 1−12T+245T2−1688T3+245pT4−12p2T5+p3T6 |
| 73 | S4×C2 | 1−18T+279T2−2536T3+279pT4−18p2T5+p3T6 |
| 79 | S4×C2 | 1+6T+233T2+940T3+233pT4+6p2T5+p3T6 |
| 83 | S4×C2 | 1−2T+245T2−328T3+245pT4−2p2T5+p3T6 |
| 89 | S4×C2 | 1+2T+255T2+348T3+255pT4+2p2T5+p3T6 |
| 97 | S4×C2 | 1+8T+259T2+1424T3+259pT4+8p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.313550274550052274072416963525, −7.71961054666166689607552563894, −7.60933599002272806508545558447, −7.52213522491542998239252820619, −6.96801570104968158819303396632, −6.68238811525108223837190753596, −6.24867010664876310423898326668, −6.23457926262712208796389110711, −6.10320096753296583924939336118, −5.72652633179915019160833579688, −5.11090574914218431648885106409, −4.90640372836009974697442855441, −4.85498820906525652532797636383, −4.22545949719542738448259963100, −4.12566059157906538560690873193, −4.06498697054004920083203930398, −3.52725488187448770204150681972, −3.10559347532886370234082178054, −2.35274810372861076627246468867, −2.18552927336778953146604969676, −2.08670824598092730451087395858, −1.68191823746829392101927104267, −1.08868185482885373761069613152, −0.848118109209223973030578593831, −0.65765036634972510776457339643,
0.65765036634972510776457339643, 0.848118109209223973030578593831, 1.08868185482885373761069613152, 1.68191823746829392101927104267, 2.08670824598092730451087395858, 2.18552927336778953146604969676, 2.35274810372861076627246468867, 3.10559347532886370234082178054, 3.52725488187448770204150681972, 4.06498697054004920083203930398, 4.12566059157906538560690873193, 4.22545949719542738448259963100, 4.85498820906525652532797636383, 4.90640372836009974697442855441, 5.11090574914218431648885106409, 5.72652633179915019160833579688, 6.10320096753296583924939336118, 6.23457926262712208796389110711, 6.24867010664876310423898326668, 6.68238811525108223837190753596, 6.96801570104968158819303396632, 7.52213522491542998239252820619, 7.60933599002272806508545558447, 7.71961054666166689607552563894, 8.313550274550052274072416963525