Properties

Label 2-2475-1.1-c3-0-21
Degree $2$
Conductor $2475$
Sign $1$
Analytic cond. $146.029$
Root an. cond. $12.0842$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.56·2-s + 22.9·4-s − 6.05·7-s − 83.0·8-s + 11·11-s + 4.38·13-s + 33.6·14-s + 278.·16-s − 110.·17-s − 94.2·19-s − 61.1·22-s + 15.7·23-s − 24.3·26-s − 138.·28-s + 256.·29-s − 170.·31-s − 883.·32-s + 614.·34-s + 190.·37-s + 524.·38-s − 249.·41-s − 291.·43-s + 252.·44-s − 87.6·46-s + 182.·47-s − 306.·49-s + 100.·52-s + ⋯
L(s)  = 1  − 1.96·2-s + 2.86·4-s − 0.326·7-s − 3.66·8-s + 0.301·11-s + 0.0935·13-s + 0.642·14-s + 4.34·16-s − 1.57·17-s − 1.13·19-s − 0.592·22-s + 0.142·23-s − 0.183·26-s − 0.936·28-s + 1.64·29-s − 0.988·31-s − 4.88·32-s + 3.10·34-s + 0.848·37-s + 2.23·38-s − 0.950·41-s − 1.03·43-s + 0.864·44-s − 0.280·46-s + 0.565·47-s − 0.893·49-s + 0.268·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2475\)    =    \(3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(146.029\)
Root analytic conductor: \(12.0842\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2475,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4067064885\)
\(L(\frac12)\) \(\approx\) \(0.4067064885\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 - 11T \)
good2 \( 1 + 5.56T + 8T^{2} \)
7 \( 1 + 6.05T + 343T^{2} \)
13 \( 1 - 4.38T + 2.19e3T^{2} \)
17 \( 1 + 110.T + 4.91e3T^{2} \)
19 \( 1 + 94.2T + 6.85e3T^{2} \)
23 \( 1 - 15.7T + 1.21e4T^{2} \)
29 \( 1 - 256.T + 2.43e4T^{2} \)
31 \( 1 + 170.T + 2.97e4T^{2} \)
37 \( 1 - 190.T + 5.06e4T^{2} \)
41 \( 1 + 249.T + 6.89e4T^{2} \)
43 \( 1 + 291.T + 7.95e4T^{2} \)
47 \( 1 - 182.T + 1.03e5T^{2} \)
53 \( 1 + 289.T + 1.48e5T^{2} \)
59 \( 1 + 282.T + 2.05e5T^{2} \)
61 \( 1 - 167.T + 2.26e5T^{2} \)
67 \( 1 - 176.T + 3.00e5T^{2} \)
71 \( 1 + 919.T + 3.57e5T^{2} \)
73 \( 1 + 154.T + 3.89e5T^{2} \)
79 \( 1 + 882.T + 4.93e5T^{2} \)
83 \( 1 - 277.T + 5.71e5T^{2} \)
89 \( 1 - 977.T + 7.04e5T^{2} \)
97 \( 1 - 1.10e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.705511863156371384190229700646, −8.108192799794567087244957511553, −7.13581827526283837654995668023, −6.55434574309393826552331503202, −6.07320612588262219219533089877, −4.60383467572379345492065702527, −3.29025544063504161326413377142, −2.35675632314704089251216080042, −1.56671103981907851463601270980, −0.37525469839682219589408221175, 0.37525469839682219589408221175, 1.56671103981907851463601270980, 2.35675632314704089251216080042, 3.29025544063504161326413377142, 4.60383467572379345492065702527, 6.07320612588262219219533089877, 6.55434574309393826552331503202, 7.13581827526283837654995668023, 8.108192799794567087244957511553, 8.705511863156371384190229700646

Graph of the $Z$-function along the critical line