L(s) = 1 | − 5.56·2-s + 22.9·4-s − 6.05·7-s − 83.0·8-s + 11·11-s + 4.38·13-s + 33.6·14-s + 278.·16-s − 110.·17-s − 94.2·19-s − 61.1·22-s + 15.7·23-s − 24.3·26-s − 138.·28-s + 256.·29-s − 170.·31-s − 883.·32-s + 614.·34-s + 190.·37-s + 524.·38-s − 249.·41-s − 291.·43-s + 252.·44-s − 87.6·46-s + 182.·47-s − 306.·49-s + 100.·52-s + ⋯ |
L(s) = 1 | − 1.96·2-s + 2.86·4-s − 0.326·7-s − 3.66·8-s + 0.301·11-s + 0.0935·13-s + 0.642·14-s + 4.34·16-s − 1.57·17-s − 1.13·19-s − 0.592·22-s + 0.142·23-s − 0.183·26-s − 0.936·28-s + 1.64·29-s − 0.988·31-s − 4.88·32-s + 3.10·34-s + 0.848·37-s + 2.23·38-s − 0.950·41-s − 1.03·43-s + 0.864·44-s − 0.280·46-s + 0.565·47-s − 0.893·49-s + 0.268·52-s + ⋯ |
Λ(s)=(=(2475s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2475s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.4067064885 |
L(21) |
≈ |
0.4067064885 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 11 | 1−11T |
good | 2 | 1+5.56T+8T2 |
| 7 | 1+6.05T+343T2 |
| 13 | 1−4.38T+2.19e3T2 |
| 17 | 1+110.T+4.91e3T2 |
| 19 | 1+94.2T+6.85e3T2 |
| 23 | 1−15.7T+1.21e4T2 |
| 29 | 1−256.T+2.43e4T2 |
| 31 | 1+170.T+2.97e4T2 |
| 37 | 1−190.T+5.06e4T2 |
| 41 | 1+249.T+6.89e4T2 |
| 43 | 1+291.T+7.95e4T2 |
| 47 | 1−182.T+1.03e5T2 |
| 53 | 1+289.T+1.48e5T2 |
| 59 | 1+282.T+2.05e5T2 |
| 61 | 1−167.T+2.26e5T2 |
| 67 | 1−176.T+3.00e5T2 |
| 71 | 1+919.T+3.57e5T2 |
| 73 | 1+154.T+3.89e5T2 |
| 79 | 1+882.T+4.93e5T2 |
| 83 | 1−277.T+5.71e5T2 |
| 89 | 1−977.T+7.04e5T2 |
| 97 | 1−1.10e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.705511863156371384190229700646, −8.108192799794567087244957511553, −7.13581827526283837654995668023, −6.55434574309393826552331503202, −6.07320612588262219219533089877, −4.60383467572379345492065702527, −3.29025544063504161326413377142, −2.35675632314704089251216080042, −1.56671103981907851463601270980, −0.37525469839682219589408221175,
0.37525469839682219589408221175, 1.56671103981907851463601270980, 2.35675632314704089251216080042, 3.29025544063504161326413377142, 4.60383467572379345492065702527, 6.07320612588262219219533089877, 6.55434574309393826552331503202, 7.13581827526283837654995668023, 8.108192799794567087244957511553, 8.705511863156371384190229700646