L(s) = 1 | − 5.56·2-s + 22.9·4-s − 6.05·7-s − 83.0·8-s + 11·11-s + 4.38·13-s + 33.6·14-s + 278.·16-s − 110.·17-s − 94.2·19-s − 61.1·22-s + 15.7·23-s − 24.3·26-s − 138.·28-s + 256.·29-s − 170.·31-s − 883.·32-s + 614.·34-s + 190.·37-s + 524.·38-s − 249.·41-s − 291.·43-s + 252.·44-s − 87.6·46-s + 182.·47-s − 306.·49-s + 100.·52-s + ⋯ |
L(s) = 1 | − 1.96·2-s + 2.86·4-s − 0.326·7-s − 3.66·8-s + 0.301·11-s + 0.0935·13-s + 0.642·14-s + 4.34·16-s − 1.57·17-s − 1.13·19-s − 0.592·22-s + 0.142·23-s − 0.183·26-s − 0.936·28-s + 1.64·29-s − 0.988·31-s − 4.88·32-s + 3.10·34-s + 0.848·37-s + 2.23·38-s − 0.950·41-s − 1.03·43-s + 0.864·44-s − 0.280·46-s + 0.565·47-s − 0.893·49-s + 0.268·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4067064885\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4067064885\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 - 11T \) |
good | 2 | \( 1 + 5.56T + 8T^{2} \) |
| 7 | \( 1 + 6.05T + 343T^{2} \) |
| 13 | \( 1 - 4.38T + 2.19e3T^{2} \) |
| 17 | \( 1 + 110.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 94.2T + 6.85e3T^{2} \) |
| 23 | \( 1 - 15.7T + 1.21e4T^{2} \) |
| 29 | \( 1 - 256.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 170.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 190.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 249.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 291.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 182.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 289.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 282.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 167.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 176.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 919.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 154.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 882.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 277.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 977.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.10e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.705511863156371384190229700646, −8.108192799794567087244957511553, −7.13581827526283837654995668023, −6.55434574309393826552331503202, −6.07320612588262219219533089877, −4.60383467572379345492065702527, −3.29025544063504161326413377142, −2.35675632314704089251216080042, −1.56671103981907851463601270980, −0.37525469839682219589408221175,
0.37525469839682219589408221175, 1.56671103981907851463601270980, 2.35675632314704089251216080042, 3.29025544063504161326413377142, 4.60383467572379345492065702527, 6.07320612588262219219533089877, 6.55434574309393826552331503202, 7.13581827526283837654995668023, 8.108192799794567087244957511553, 8.705511863156371384190229700646