Properties

Label 2-2496-1.1-c1-0-35
Degree $2$
Conductor $2496$
Sign $-1$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s − 13-s − 6·17-s − 2·19-s − 2·21-s − 5·25-s − 27-s + 6·29-s + 2·31-s − 2·37-s + 39-s − 12·41-s + 4·43-s − 3·49-s + 6·51-s − 6·53-s + 2·57-s − 12·59-s − 2·61-s + 2·63-s + 10·67-s + 12·71-s + 14·73-s + 5·75-s + 8·79-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s − 0.277·13-s − 1.45·17-s − 0.458·19-s − 0.436·21-s − 25-s − 0.192·27-s + 1.11·29-s + 0.359·31-s − 0.328·37-s + 0.160·39-s − 1.87·41-s + 0.609·43-s − 3/7·49-s + 0.840·51-s − 0.824·53-s + 0.264·57-s − 1.56·59-s − 0.256·61-s + 0.251·63-s + 1.22·67-s + 1.42·71-s + 1.63·73-s + 0.577·75-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.397749324163862668074879881731, −7.903021947901095999330816312888, −6.77588051345062669609369199457, −6.38841228560375566367348698112, −5.23796721936294605278821689684, −4.69511531925842197635869476162, −3.86363777727094941125777069865, −2.49852565048742461389380956784, −1.54822382936130812607770538657, 0, 1.54822382936130812607770538657, 2.49852565048742461389380956784, 3.86363777727094941125777069865, 4.69511531925842197635869476162, 5.23796721936294605278821689684, 6.38841228560375566367348698112, 6.77588051345062669609369199457, 7.903021947901095999330816312888, 8.397749324163862668074879881731

Graph of the $Z$-function along the critical line