Properties

Label 6-2499e3-1.1-c3e3-0-0
Degree 66
Conductor 1560625749915606257499
Sign 1-1
Analytic cond. 3.20550×1063.20550\times 10^{6}
Root an. cond. 12.142712.1427
Motivic weight 33
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 33

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s − 9·3-s + 7·4-s − 8·5-s − 45·6-s − 9·8-s + 54·9-s − 40·10-s + 34·11-s − 63·12-s − 36·13-s + 72·15-s − 85·16-s − 51·17-s + 270·18-s + 142·19-s − 56·20-s + 170·22-s + 110·23-s + 81·24-s − 252·25-s − 180·26-s − 270·27-s + 90·29-s + 360·30-s + 148·31-s − 341·32-s + ⋯
L(s)  = 1  + 1.76·2-s − 1.73·3-s + 7/8·4-s − 0.715·5-s − 3.06·6-s − 0.397·8-s + 2·9-s − 1.26·10-s + 0.931·11-s − 1.51·12-s − 0.768·13-s + 1.23·15-s − 1.32·16-s − 0.727·17-s + 3.53·18-s + 1.71·19-s − 0.626·20-s + 1.64·22-s + 0.997·23-s + 0.688·24-s − 2.01·25-s − 1.35·26-s − 1.92·27-s + 0.576·29-s + 2.19·30-s + 0.857·31-s − 1.88·32-s + ⋯

Functional equation

Λ(s)=((3376173)s/2ΓC(s)3L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 7^{6} \cdot 17^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(4-s)\end{aligned}
Λ(s)=((3376173)s/2ΓC(s+3/2)3L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 7^{6} \cdot 17^{3}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}

Invariants

Degree: 66
Conductor: 33761733^{3} \cdot 7^{6} \cdot 17^{3}
Sign: 1-1
Analytic conductor: 3.20550×1063.20550\times 10^{6}
Root analytic conductor: 12.142712.1427
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 33
Selberg data: (6, 3376173, ( :3/2,3/2,3/2), 1)(6,\ 3^{3} \cdot 7^{6} \cdot 17^{3} ,\ ( \ : 3/2, 3/2, 3/2 ),\ -1 )

Particular Values

L(2)L(2) == 00
L(12)L(\frac12) == 00
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad3C1C_1 (1+pT)3 ( 1 + p T )^{3}
7 1 1
17C1C_1 (1+pT)3 ( 1 + p T )^{3}
good2S4×C2S_4\times C_2 15T+9pT223pT3+9p4T45p6T5+p9T6 1 - 5 T + 9 p T^{2} - 23 p T^{3} + 9 p^{4} T^{4} - 5 p^{6} T^{5} + p^{9} T^{6}
5S4×C2S_4\times C_2 1+8T+316T2+1534T3+316p3T4+8p6T5+p9T6 1 + 8 T + 316 T^{2} + 1534 T^{3} + 316 p^{3} T^{4} + 8 p^{6} T^{5} + p^{9} T^{6}
11S4×C2S_4\times C_2 134T+2450T299472T3+2450p3T434p6T5+p9T6 1 - 34 T + 2450 T^{2} - 99472 T^{3} + 2450 p^{3} T^{4} - 34 p^{6} T^{5} + p^{9} T^{6}
13S4×C2S_4\times C_2 1+36T+1060T2+35486T3+1060p3T4+36p6T5+p9T6 1 + 36 T + 1060 T^{2} + 35486 T^{3} + 1060 p^{3} T^{4} + 36 p^{6} T^{5} + p^{9} T^{6}
19S4×C2S_4\times C_2 1142T+24690T21956200T3+24690p3T4142p6T5+p9T6 1 - 142 T + 24690 T^{2} - 1956200 T^{3} + 24690 p^{3} T^{4} - 142 p^{6} T^{5} + p^{9} T^{6}
23S4×C2S_4\times C_2 1110T+30814T22729980T3+30814p3T4110p6T5+p9T6 1 - 110 T + 30814 T^{2} - 2729980 T^{3} + 30814 p^{3} T^{4} - 110 p^{6} T^{5} + p^{9} T^{6}
29S4×C2S_4\times C_2 190T+36139T24805340T3+36139p3T490p6T5+p9T6 1 - 90 T + 36139 T^{2} - 4805340 T^{3} + 36139 p^{3} T^{4} - 90 p^{6} T^{5} + p^{9} T^{6}
31S4×C2S_4\times C_2 1148T+82401T28177688T3+82401p3T4148p6T5+p9T6 1 - 148 T + 82401 T^{2} - 8177688 T^{3} + 82401 p^{3} T^{4} - 148 p^{6} T^{5} + p^{9} T^{6}
37S4×C2S_4\times C_2 1110T+71031T217113452T3+71031p3T4110p6T5+p9T6 1 - 110 T + 71031 T^{2} - 17113452 T^{3} + 71031 p^{3} T^{4} - 110 p^{6} T^{5} + p^{9} T^{6}
41S4×C2S_4\times C_2 1+720T+366208T2+109686282T3+366208p3T4+720p6T5+p9T6 1 + 720 T + 366208 T^{2} + 109686282 T^{3} + 366208 p^{3} T^{4} + 720 p^{6} T^{5} + p^{9} T^{6}
43S4×C2S_4\times C_2 1+146T40182T239408872T340182p3T4+146p6T5+p9T6 1 + 146 T - 40182 T^{2} - 39408872 T^{3} - 40182 p^{3} T^{4} + 146 p^{6} T^{5} + p^{9} T^{6}
47S4×C2S_4\times C_2 1+500T+217553T2+73350104T3+217553p3T4+500p6T5+p9T6 1 + 500 T + 217553 T^{2} + 73350104 T^{3} + 217553 p^{3} T^{4} + 500 p^{6} T^{5} + p^{9} T^{6}
53S4×C2S_4\times C_2 1610T+340931T2101182252T3+340931p3T4610p6T5+p9T6 1 - 610 T + 340931 T^{2} - 101182252 T^{3} + 340931 p^{3} T^{4} - 610 p^{6} T^{5} + p^{9} T^{6}
59S4×C2S_4\times C_2 1216T+576349T290026112T3+576349p3T4216p6T5+p9T6 1 - 216 T + 576349 T^{2} - 90026112 T^{3} + 576349 p^{3} T^{4} - 216 p^{6} T^{5} + p^{9} T^{6}
61S4×C2S_4\times C_2 118T+539791T216298516T3+539791p3T418p6T5+p9T6 1 - 18 T + 539791 T^{2} - 16298516 T^{3} + 539791 p^{3} T^{4} - 18 p^{6} T^{5} + p^{9} T^{6}
67S4×C2S_4\times C_2 1+1404T+1477377T2+906611816T3+1477377p3T4+1404p6T5+p9T6 1 + 1404 T + 1477377 T^{2} + 906611816 T^{3} + 1477377 p^{3} T^{4} + 1404 p^{6} T^{5} + p^{9} T^{6}
71S4×C2S_4\times C_2 1+960T+856597T2+459564544T3+856597p3T4+960p6T5+p9T6 1 + 960 T + 856597 T^{2} + 459564544 T^{3} + 856597 p^{3} T^{4} + 960 p^{6} T^{5} + p^{9} T^{6}
73S4×C2S_4\times C_2 1794T+908231T2390276652T3+908231p3T4794p6T5+p9T6 1 - 794 T + 908231 T^{2} - 390276652 T^{3} + 908231 p^{3} T^{4} - 794 p^{6} T^{5} + p^{9} T^{6}
79S4×C2S_4\times C_2 1+276T+332913T2+51343320T3+332913p3T4+276p6T5+p9T6 1 + 276 T + 332913 T^{2} + 51343320 T^{3} + 332913 p^{3} T^{4} + 276 p^{6} T^{5} + p^{9} T^{6}
83S4×C2S_4\times C_2 11552T+2256501T21786088240T3+2256501p3T41552p6T5+p9T6 1 - 1552 T + 2256501 T^{2} - 1786088240 T^{3} + 2256501 p^{3} T^{4} - 1552 p^{6} T^{5} + p^{9} T^{6}
89S4×C2S_4\times C_2 1+1394T+2215963T2+1686994660T3+2215963p3T4+1394p6T5+p9T6 1 + 1394 T + 2215963 T^{2} + 1686994660 T^{3} + 2215963 p^{3} T^{4} + 1394 p^{6} T^{5} + p^{9} T^{6}
97S4×C2S_4\times C_2 1+402T+119587T21292278940T3+119587p3T4+402p6T5+p9T6 1 + 402 T + 119587 T^{2} - 1292278940 T^{3} + 119587 p^{3} T^{4} + 402 p^{6} T^{5} + p^{9} T^{6}
show more
show less
   L(s)=p j=16(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.80588895043011584585831468321, −7.49604948674196778724405606294, −7.23135481165481544014117220841, −6.94738341126312510849480785008, −6.92488966460648203967443628114, −6.52700580991495468397924775085, −6.32710229705158581004736821764, −5.96061711570822977219941409364, −5.81410093336613407919121143210, −5.47494394729836387286320717402, −5.11372167072484411220923381765, −4.94472211662829153435418205057, −4.93434629972694597133936920910, −4.50970437421923279589623760893, −4.22722006808143702779690666392, −4.16901005546390626103105961575, −3.58474147876035970347570261366, −3.49988653211928584507805917134, −3.33556481002951401993918581590, −2.61560268441294692936521059407, −2.55266107045279645504189187457, −1.80608120416430178386828373984, −1.65007937413450827103348883539, −1.06871284502703594514466631568, −0.932547666984383371569799150606, 0, 0, 0, 0.932547666984383371569799150606, 1.06871284502703594514466631568, 1.65007937413450827103348883539, 1.80608120416430178386828373984, 2.55266107045279645504189187457, 2.61560268441294692936521059407, 3.33556481002951401993918581590, 3.49988653211928584507805917134, 3.58474147876035970347570261366, 4.16901005546390626103105961575, 4.22722006808143702779690666392, 4.50970437421923279589623760893, 4.93434629972694597133936920910, 4.94472211662829153435418205057, 5.11372167072484411220923381765, 5.47494394729836387286320717402, 5.81410093336613407919121143210, 5.96061711570822977219941409364, 6.32710229705158581004736821764, 6.52700580991495468397924775085, 6.92488966460648203967443628114, 6.94738341126312510849480785008, 7.23135481165481544014117220841, 7.49604948674196778724405606294, 7.80588895043011584585831468321

Graph of the ZZ-function along the critical line