L(s) = 1 | + 5·2-s − 9·3-s + 7·4-s − 8·5-s − 45·6-s − 9·8-s + 54·9-s − 40·10-s + 34·11-s − 63·12-s − 36·13-s + 72·15-s − 85·16-s − 51·17-s + 270·18-s + 142·19-s − 56·20-s + 170·22-s + 110·23-s + 81·24-s − 252·25-s − 180·26-s − 270·27-s + 90·29-s + 360·30-s + 148·31-s − 341·32-s + ⋯ |
L(s) = 1 | + 1.76·2-s − 1.73·3-s + 7/8·4-s − 0.715·5-s − 3.06·6-s − 0.397·8-s + 2·9-s − 1.26·10-s + 0.931·11-s − 1.51·12-s − 0.768·13-s + 1.23·15-s − 1.32·16-s − 0.727·17-s + 3.53·18-s + 1.71·19-s − 0.626·20-s + 1.64·22-s + 0.997·23-s + 0.688·24-s − 2.01·25-s − 1.35·26-s − 1.92·27-s + 0.576·29-s + 2.19·30-s + 0.857·31-s − 1.88·32-s + ⋯ |
Λ(s)=(=((33⋅76⋅173)s/2ΓC(s)3L(s)−Λ(4−s)
Λ(s)=(=((33⋅76⋅173)s/2ΓC(s+3/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅76⋅173
|
Sign: |
−1
|
Analytic conductor: |
3.20550×106 |
Root analytic conductor: |
12.1427 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 33⋅76⋅173, ( :3/2,3/2,3/2), −1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+pT)3 |
| 7 | | 1 |
| 17 | C1 | (1+pT)3 |
good | 2 | S4×C2 | 1−5T+9pT2−23pT3+9p4T4−5p6T5+p9T6 |
| 5 | S4×C2 | 1+8T+316T2+1534T3+316p3T4+8p6T5+p9T6 |
| 11 | S4×C2 | 1−34T+2450T2−99472T3+2450p3T4−34p6T5+p9T6 |
| 13 | S4×C2 | 1+36T+1060T2+35486T3+1060p3T4+36p6T5+p9T6 |
| 19 | S4×C2 | 1−142T+24690T2−1956200T3+24690p3T4−142p6T5+p9T6 |
| 23 | S4×C2 | 1−110T+30814T2−2729980T3+30814p3T4−110p6T5+p9T6 |
| 29 | S4×C2 | 1−90T+36139T2−4805340T3+36139p3T4−90p6T5+p9T6 |
| 31 | S4×C2 | 1−148T+82401T2−8177688T3+82401p3T4−148p6T5+p9T6 |
| 37 | S4×C2 | 1−110T+71031T2−17113452T3+71031p3T4−110p6T5+p9T6 |
| 41 | S4×C2 | 1+720T+366208T2+109686282T3+366208p3T4+720p6T5+p9T6 |
| 43 | S4×C2 | 1+146T−40182T2−39408872T3−40182p3T4+146p6T5+p9T6 |
| 47 | S4×C2 | 1+500T+217553T2+73350104T3+217553p3T4+500p6T5+p9T6 |
| 53 | S4×C2 | 1−610T+340931T2−101182252T3+340931p3T4−610p6T5+p9T6 |
| 59 | S4×C2 | 1−216T+576349T2−90026112T3+576349p3T4−216p6T5+p9T6 |
| 61 | S4×C2 | 1−18T+539791T2−16298516T3+539791p3T4−18p6T5+p9T6 |
| 67 | S4×C2 | 1+1404T+1477377T2+906611816T3+1477377p3T4+1404p6T5+p9T6 |
| 71 | S4×C2 | 1+960T+856597T2+459564544T3+856597p3T4+960p6T5+p9T6 |
| 73 | S4×C2 | 1−794T+908231T2−390276652T3+908231p3T4−794p6T5+p9T6 |
| 79 | S4×C2 | 1+276T+332913T2+51343320T3+332913p3T4+276p6T5+p9T6 |
| 83 | S4×C2 | 1−1552T+2256501T2−1786088240T3+2256501p3T4−1552p6T5+p9T6 |
| 89 | S4×C2 | 1+1394T+2215963T2+1686994660T3+2215963p3T4+1394p6T5+p9T6 |
| 97 | S4×C2 | 1+402T+119587T2−1292278940T3+119587p3T4+402p6T5+p9T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80588895043011584585831468321, −7.49604948674196778724405606294, −7.23135481165481544014117220841, −6.94738341126312510849480785008, −6.92488966460648203967443628114, −6.52700580991495468397924775085, −6.32710229705158581004736821764, −5.96061711570822977219941409364, −5.81410093336613407919121143210, −5.47494394729836387286320717402, −5.11372167072484411220923381765, −4.94472211662829153435418205057, −4.93434629972694597133936920910, −4.50970437421923279589623760893, −4.22722006808143702779690666392, −4.16901005546390626103105961575, −3.58474147876035970347570261366, −3.49988653211928584507805917134, −3.33556481002951401993918581590, −2.61560268441294692936521059407, −2.55266107045279645504189187457, −1.80608120416430178386828373984, −1.65007937413450827103348883539, −1.06871284502703594514466631568, −0.932547666984383371569799150606, 0, 0, 0,
0.932547666984383371569799150606, 1.06871284502703594514466631568, 1.65007937413450827103348883539, 1.80608120416430178386828373984, 2.55266107045279645504189187457, 2.61560268441294692936521059407, 3.33556481002951401993918581590, 3.49988653211928584507805917134, 3.58474147876035970347570261366, 4.16901005546390626103105961575, 4.22722006808143702779690666392, 4.50970437421923279589623760893, 4.93434629972694597133936920910, 4.94472211662829153435418205057, 5.11372167072484411220923381765, 5.47494394729836387286320717402, 5.81410093336613407919121143210, 5.96061711570822977219941409364, 6.32710229705158581004736821764, 6.52700580991495468397924775085, 6.92488966460648203967443628114, 6.94738341126312510849480785008, 7.23135481165481544014117220841, 7.49604948674196778724405606294, 7.80588895043011584585831468321