L(s) = 1 | + 2·2-s − 2·3-s + 4-s − 4·6-s + 16·7-s + 7·9-s − 4·11-s − 2·12-s − 2·13-s + 32·14-s − 4·17-s + 14·18-s − 10·19-s − 32·21-s − 8·22-s − 12·23-s − 4·26-s − 6·27-s + 16·28-s − 10·29-s + 6·31-s − 2·32-s + 8·33-s − 8·34-s + 7·36-s − 4·37-s − 20·38-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 1/2·4-s − 1.63·6-s + 6.04·7-s + 7/3·9-s − 1.20·11-s − 0.577·12-s − 0.554·13-s + 8.55·14-s − 0.970·17-s + 3.29·18-s − 2.29·19-s − 6.98·21-s − 1.70·22-s − 2.50·23-s − 0.784·26-s − 1.15·27-s + 3.02·28-s − 1.85·29-s + 1.07·31-s − 0.353·32-s + 1.39·33-s − 1.37·34-s + 7/6·36-s − 0.657·37-s − 3.24·38-s + ⋯ |
Λ(s)=(=((28⋅524)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((28⋅524)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.831694951 |
L(21) |
≈ |
3.831694951 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−T+T2−T3+T4)2 |
| 5 | 1 |
good | 3 | (1−2T+2T2−2pT3+p2T4)2(1+2pT+13T2+10T3+T4+10pT5+13p2T6+2p4T7+p4T8) |
| 7 | (1−8T+6pT2−160T3+471T4−160pT5+6p3T6−8p3T7+p4T8)2 |
| 11 | 1+4T−25T2−80T3+260T4+752T5+123pT6−210pT7−44765T8−210p2T9+123p3T10+752p3T11+260p4T12−80p5T13−25p6T14+4p7T15+p8T16 |
| 13 | 1+2T+7T2−34T3+16T4−68T5+985T6−2342T7−9421T8−2342pT9+985p2T10−68p3T11+16p4T12−34p5T13+7p6T14+2p7T15+p8T16 |
| 17 | 1+4T−pT2−132T3+111T4+364T5−6555T6+8564T7+249544T8+8564pT9−6555p2T10+364p3T11+111p4T12−132p5T13−p7T14+4p7T15+p8T16 |
| 19 | 1+10T+22T2+30T3+1023T4+4210T5−4736T6+17200T7+424105T8+17200pT9−4736p2T10+4210p3T11+1023p4T12+30p5T13+22p6T14+10p7T15+p8T16 |
| 23 | 1+12T+17T2−244T3−304T4+6472T5+29135T6+23748T7−173281T8+23748pT9+29135p2T10+6472p3T11−304p4T12−244p5T13+17p6T14+12p7T15+p8T16 |
| 29 | 1+10T+47T2+470T3+4888T4+28460T5+139689T6+999650T7+6593475T8+999650pT9+139689p2T10+28460p3T11+4888p4T12+470p5T13+47p6T14+10p7T15+p8T16 |
| 31 | 1−6T+5T2−110T3+1840T4−4048T5−9417T6−113520T7+1708895T8−113520pT9−9417p2T10−4048p3T11+1840p4T12−110p5T13+5p6T14−6p7T15+p8T16 |
| 37 | 1+4T−7T2−6pT3+371T4−7606T5−27105T6−1656T7+3727704T8−1656pT9−27105p2T10−7606p3T11+371p4T12−6p6T13−7p6T14+4p7T15+p8T16 |
| 41 | 1+14T+45T2+130T3+2680T4+7652T5−46977T6−402900T7−2944785T8−402900pT9−46977p2T10+7652p3T11+2680p4T12+130p5T13+45p6T14+14p7T15+p8T16 |
| 43 | (1−14T+158T2−1080T3+7971T4−1080pT5+158p2T6−14p3T7+p4T8)2 |
| 47 | 1+24T+313T2+2808T3+18636T4+1392pT5−279085T6−6389496T7−55226161T8−6389496pT9−279085p2T10+1392p4T11+18636p4T12+2808p5T13+313p6T14+24p7T15+p8T16 |
| 53 | 1−8T−58T2+116T3+127pT4−21448T5−130860T6−424352T7+13016709T8−424352pT9−130860p2T10−21448p3T11+127p5T12+116p5T13−58p6T14−8p7T15+p8T16 |
| 59 | 1−2pT2+3563T4+324004T6−38801675T8+324004p2T10+3563p4T12−2p7T14+p8T16 |
| 61 | 1+14T+30T2−30T3+5215T4+25262T5−186192T6−1508020T7−4396815T8−1508020pT9−186192p2T10+25262p3T11+5215p4T12−30p5T13+30p6T14+14p7T15+p8T16 |
| 67 | 1+4T−137T2−192T3+10676T4+15424T5−242695T6+235354T7+7588819T8+235354pT9−242695p2T10+15424p3T11+10676p4T12−192p5T13−137p6T14+4p7T15+p8T16 |
| 71 | 1+34T+425T2+2570T3+16960T4+219512T5+2212323T6+19311440T7+171308535T8+19311440pT9+2212323p2T10+219512p3T11+16960p4T12+2570p5T13+425p6T14+34p7T15+p8T16 |
| 73 | 1+12T−38T2−1764T3−9549T4+121692T5+1406420T6−2622672T7−104550091T8−2622672pT9+1406420p2T10+121692p3T11−9549p4T12−1764p5T13−38p6T14+12p7T15+p8T16 |
| 79 | 1−138T2−1500T3+4403T4+205200T5+1430844T6−7779600T7−206126795T8−7779600pT9+1430844p2T10+205200p3T11+4403p4T12−1500p5T13−138p6T14+p8T16 |
| 83 | 1+32T+427T2+2916T3+11596T4+29072T5−1136915T6−33374062T7−418943541T8−33374062pT9−1136915p2T10+29072p3T11+11596p4T12+2916p5T13+427p6T14+32p7T15+p8T16 |
| 89 | (1+10T+71T2+1290T3+19001T4+1290pT5+71p2T6+10p3T7+p4T8)2 |
| 97 | 1+4T−62T2−1692T3+3191T4−2396T5+172940T6−2472896T7+139003669T8−2472896pT9+172940p2T10−2396p3T11+3191p4T12−1692p5T13−62p6T14+4p7T15+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.49093703479943886321986074602, −5.43372771642662983347066278302, −4.98571559554719292923555122886, −4.90462421876633223221319847536, −4.68597308322830525227790415343, −4.59263634450102664309031021697, −4.52686115532177129638187565949, −4.49992812249628717753891832154, −4.36400332421360385316671949810, −4.33737840807449090638038776995, −4.02254084289118645323962448667, −4.00880648930274704342075423455, −4.00010403702497186433442521473, −3.36840450275829870156031297583, −3.13440360938131157882986120569, −2.80198363581217135867929795994, −2.73217128410761034916478451304, −2.64094438855262464013720547792, −2.00150833797728497691990039748, −1.83534057796275142764082466626, −1.66134306922778889926478198438, −1.66041690072960894843552685042, −1.64428550327775767555676573910, −1.56058883963570202201840204955, −0.41756539097360934869493111520,
0.41756539097360934869493111520, 1.56058883963570202201840204955, 1.64428550327775767555676573910, 1.66041690072960894843552685042, 1.66134306922778889926478198438, 1.83534057796275142764082466626, 2.00150833797728497691990039748, 2.64094438855262464013720547792, 2.73217128410761034916478451304, 2.80198363581217135867929795994, 3.13440360938131157882986120569, 3.36840450275829870156031297583, 4.00010403702497186433442521473, 4.00880648930274704342075423455, 4.02254084289118645323962448667, 4.33737840807449090638038776995, 4.36400332421360385316671949810, 4.49992812249628717753891832154, 4.52686115532177129638187565949, 4.59263634450102664309031021697, 4.68597308322830525227790415343, 4.90462421876633223221319847536, 4.98571559554719292923555122886, 5.43372771642662983347066278302, 5.49093703479943886321986074602
Plot not available for L-functions of degree greater than 10.