L(s) = 1 | + (−0.618 − 1.90i)2-s + (4.17 − 3.03i)3-s + (−3.23 + 2.35i)4-s + (−8.34 − 6.06i)6-s + 3.36·7-s + (6.47 + 4.70i)8-s + (−0.124 + 0.383i)9-s + (−4.26 − 13.1i)11-s + (−6.37 + 19.6i)12-s + (28.1 − 86.7i)13-s + (−2.07 − 6.39i)14-s + (4.94 − 15.2i)16-s + (−44.3 − 32.2i)17-s + 0.806·18-s + (−49.0 − 35.6i)19-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.672i)2-s + (0.802 − 0.583i)3-s + (−0.404 + 0.293i)4-s + (−0.567 − 0.412i)6-s + 0.181·7-s + (0.286 + 0.207i)8-s + (−0.00461 + 0.0142i)9-s + (−0.116 − 0.360i)11-s + (−0.153 + 0.471i)12-s + (0.601 − 1.85i)13-s + (−0.0396 − 0.122i)14-s + (0.0772 − 0.237i)16-s + (−0.632 − 0.459i)17-s + 0.0105·18-s + (−0.592 − 0.430i)19-s + ⋯ |
Λ(s)=(=(250s/2ΓC(s)L(s)(−0.836+0.547i)Λ(4−s)
Λ(s)=(=(250s/2ΓC(s+3/2)L(s)(−0.836+0.547i)Λ(1−s)
Degree: |
2 |
Conductor: |
250
= 2⋅53
|
Sign: |
−0.836+0.547i
|
Analytic conductor: |
14.7504 |
Root analytic conductor: |
3.84063 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ250(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 250, ( :3/2), −0.836+0.547i)
|
Particular Values
L(2) |
≈ |
0.483830−1.62373i |
L(21) |
≈ |
0.483830−1.62373i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.618+1.90i)T |
| 5 | 1 |
good | 3 | 1+(−4.17+3.03i)T+(8.34−25.6i)T2 |
| 7 | 1−3.36T+343T2 |
| 11 | 1+(4.26+13.1i)T+(−1.07e3+782.i)T2 |
| 13 | 1+(−28.1+86.7i)T+(−1.77e3−1.29e3i)T2 |
| 17 | 1+(44.3+32.2i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(49.0+35.6i)T+(2.11e3+6.52e3i)T2 |
| 23 | 1+(41.3+127.i)T+(−9.84e3+7.15e3i)T2 |
| 29 | 1+(−125.+90.8i)T+(7.53e3−2.31e4i)T2 |
| 31 | 1+(77.5+56.3i)T+(9.20e3+2.83e4i)T2 |
| 37 | 1+(4.12−12.6i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(47.9−147.i)T+(−5.57e4−4.05e4i)T2 |
| 43 | 1−471.T+7.95e4T2 |
| 47 | 1+(145.−105.i)T+(3.20e4−9.87e4i)T2 |
| 53 | 1+(65.2−47.4i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(69.6−214.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−90.5−278.i)T+(−1.83e5+1.33e5i)T2 |
| 67 | 1+(814.+591.i)T+(9.29e4+2.86e5i)T2 |
| 71 | 1+(−791.+575.i)T+(1.10e5−3.40e5i)T2 |
| 73 | 1+(249.+769.i)T+(−3.14e5+2.28e5i)T2 |
| 79 | 1+(−97.7+70.9i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(−935.−679.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1+(−399.−1.22e3i)T+(−5.70e5+4.14e5i)T2 |
| 97 | 1+(−1.32e3+963.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.00685304854704425937272519825, −10.49853912880352244068452204033, −9.130846387366896467617730469794, −8.269996337541394342146295307864, −7.72365656736590857277037428462, −6.19841366090155927774243778891, −4.74154166018124733874135339620, −3.18386039484593507762290045643, −2.29922538066669780121225329420, −0.65784281463471386596698839175,
1.85447032050923050413642730163, 3.72001115674016690901277046138, 4.55690487986235160866259051011, 6.10589223789264908146097166326, 7.06055636857564484734364668075, 8.338713523220947616682663902362, 8.998646210691774631558383460469, 9.725000048490753206849114197865, 10.86107940395757523006122373710, 11.95989718205363985966199469038