L(s) = 1 | + (1.61 − 1.17i)2-s + (3.00 − 9.24i)3-s + (1.23 − 3.80i)4-s + (−6.01 − 18.4i)6-s + 23.3·7-s + (−2.47 − 7.60i)8-s + (−54.6 − 39.7i)9-s + (6.24 − 4.53i)11-s + (−31.4 − 22.8i)12-s + (−31.6 − 23.0i)13-s + (37.8 − 27.4i)14-s + (−12.9 − 9.40i)16-s + (5.78 + 17.7i)17-s − 135.·18-s + (32.5 + 100. i)19-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.578 − 1.78i)3-s + (0.154 − 0.475i)4-s + (−0.408 − 1.25i)6-s + 1.26·7-s + (−0.109 − 0.336i)8-s + (−2.02 − 1.47i)9-s + (0.171 − 0.124i)11-s + (−0.757 − 0.550i)12-s + (−0.675 − 0.491i)13-s + (0.721 − 0.524i)14-s + (−0.202 − 0.146i)16-s + (0.0824 + 0.253i)17-s − 1.76·18-s + (0.393 + 1.20i)19-s + ⋯ |
Λ(s)=(=(250s/2ΓC(s)L(s)(−0.926+0.377i)Λ(4−s)
Λ(s)=(=(250s/2ΓC(s+3/2)L(s)(−0.926+0.377i)Λ(1−s)
Degree: |
2 |
Conductor: |
250
= 2⋅53
|
Sign: |
−0.926+0.377i
|
Analytic conductor: |
14.7504 |
Root analytic conductor: |
3.84063 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ250(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 250, ( :3/2), −0.926+0.377i)
|
Particular Values
L(2) |
≈ |
0.604059−3.08364i |
L(21) |
≈ |
0.604059−3.08364i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.61+1.17i)T |
| 5 | 1 |
good | 3 | 1+(−3.00+9.24i)T+(−21.8−15.8i)T2 |
| 7 | 1−23.3T+343T2 |
| 11 | 1+(−6.24+4.53i)T+(411.−1.26e3i)T2 |
| 13 | 1+(31.6+23.0i)T+(678.+2.08e3i)T2 |
| 17 | 1+(−5.78−17.7i)T+(−3.97e3+2.88e3i)T2 |
| 19 | 1+(−32.5−100.i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1+(−127.+92.4i)T+(3.75e3−1.15e4i)T2 |
| 29 | 1+(13.9−42.9i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(−42.7−131.i)T+(−2.41e4+1.75e4i)T2 |
| 37 | 1+(125.+91.2i)T+(1.56e4+4.81e4i)T2 |
| 41 | 1+(15.6+11.3i)T+(2.12e4+6.55e4i)T2 |
| 43 | 1−70.2T+7.95e4T2 |
| 47 | 1+(139.−430.i)T+(−8.39e4−6.10e4i)T2 |
| 53 | 1+(14.9−45.9i)T+(−1.20e5−8.75e4i)T2 |
| 59 | 1+(−635.−461.i)T+(6.34e4+1.95e5i)T2 |
| 61 | 1+(−62.9+45.7i)T+(7.01e4−2.15e5i)T2 |
| 67 | 1+(242.+747.i)T+(−2.43e5+1.76e5i)T2 |
| 71 | 1+(−289.+892.i)T+(−2.89e5−2.10e5i)T2 |
| 73 | 1+(−2.28+1.65i)T+(1.20e5−3.69e5i)T2 |
| 79 | 1+(−241.+744.i)T+(−3.98e5−2.89e5i)T2 |
| 83 | 1+(−169.−521.i)T+(−4.62e5+3.36e5i)T2 |
| 89 | 1+(−581.+422.i)T+(2.17e5−6.70e5i)T2 |
| 97 | 1+(−175.+541.i)T+(−7.38e5−5.36e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59669375882850514714565929362, −10.56256000907618187923614701737, −8.958445519002401660116192093801, −8.031965433437083236739524289218, −7.30897245473613054878910728991, −6.16751975344377210269853550022, −5.00586655068622913812021345143, −3.22589650600207751304753680562, −2.01900833222789867453948942060, −1.04236653208224314462396115976,
2.50519640889933658816930829415, 3.81258325613193288443755786566, 4.85318722684980699137940106786, 5.24622151760868161024817545830, 7.16206299535398854981017954143, 8.293416255762332703704710552589, 9.132997122429592634568326721305, 10.00117532330684402713633145320, 11.28843381035020644951223063855, 11.56706151376520245915987666943