L(s) = 1 | + (1.64 − 0.545i)3-s + (0.849 + 1.47i)5-s + (0.5 − 0.866i)7-s + (2.40 − 1.79i)9-s + (−1.23 + 2.14i)11-s + (−0.388 − 0.673i)13-s + (2.19 + 1.95i)15-s + 2.81·17-s − 4.98·19-s + (0.349 − 1.69i)21-s + (−0.356 − 0.616i)23-s + (1.05 − 1.82i)25-s + (2.97 − 4.25i)27-s + (−2.25 + 3.90i)29-s + (−2.54 − 4.41i)31-s + ⋯ |
L(s) = 1 | + (0.949 − 0.314i)3-s + (0.380 + 0.658i)5-s + (0.188 − 0.327i)7-s + (0.801 − 0.597i)9-s + (−0.373 + 0.646i)11-s + (−0.107 − 0.186i)13-s + (0.567 + 0.505i)15-s + 0.681·17-s − 1.14·19-s + (0.0763 − 0.370i)21-s + (−0.0742 − 0.128i)23-s + (0.211 − 0.365i)25-s + (0.572 − 0.819i)27-s + (−0.418 + 0.725i)29-s + (−0.457 − 0.793i)31-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.998+0.0576i)Λ(2−s)
Λ(s)=(=(252s/2ΓC(s+1/2)L(s)(0.998+0.0576i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.998+0.0576i
|
Analytic conductor: |
2.01223 |
Root analytic conductor: |
1.41853 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :1/2), 0.998+0.0576i)
|
Particular Values
L(1) |
≈ |
1.74933−0.0504494i |
L(21) |
≈ |
1.74933−0.0504494i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.64+0.545i)T |
| 7 | 1+(−0.5+0.866i)T |
good | 5 | 1+(−0.849−1.47i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1.23−2.14i)T+(−5.5−9.52i)T2 |
| 13 | 1+(0.388+0.673i)T+(−6.5+11.2i)T2 |
| 17 | 1−2.81T+17T2 |
| 19 | 1+4.98T+19T2 |
| 23 | 1+(0.356+0.616i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.25−3.90i)T+(−14.5−25.1i)T2 |
| 31 | 1+(2.54+4.41i)T+(−15.5+26.8i)T2 |
| 37 | 1+6.87T+37T2 |
| 41 | 1+(−2.93−5.08i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.32+4.03i)T+(−21.5−37.2i)T2 |
| 47 | 1+(6.49−11.2i)T+(−23.5−40.7i)T2 |
| 53 | 1−1.88T+53T2 |
| 59 | 1+(7.14+12.3i)T+(−29.5+51.0i)T2 |
| 61 | 1+(7.15−12.3i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.99+6.91i)T+(−33.5+58.0i)T2 |
| 71 | 1+10.2T+71T2 |
| 73 | 1−4.98T+73T2 |
| 79 | 1+(−4.60+7.97i)T+(−39.5−68.4i)T2 |
| 83 | 1+(4.40−7.63i)T+(−41.5−71.8i)T2 |
| 89 | 1−9.65T+89T2 |
| 97 | 1+(4.32−7.48i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.32204655448213822019311200786, −10.83032114973578574786466118747, −10.12460296603982613872253832124, −9.155258042267239360438596881160, −7.999846285896156494990053914020, −7.23418128840293447553933237774, −6.19569580088585289446433324955, −4.54728175548612171116546703887, −3.17765900896136957523199323648, −1.94969095509039845999500024896,
1.89681628225916855404210113582, 3.36413129489700293149825330547, 4.71448675895617768107620907995, 5.77916325892318407706627560349, 7.33073805670780839804497214772, 8.452264684880892918012076639256, 8.967544552713325109932539769882, 10.00857783404115280157127025302, 10.92448305492503022204835730889, 12.26050169677894480813023990743