L(s) = 1 | + (8.29 − 4.79i)5-s + (0.5 + 6.98i)7-s + (2.29 − 3.97i)11-s − 7.84i·13-s + (16.5 + 9.58i)17-s + (−14.2 + 8.20i)19-s + (−12 − 20.7i)23-s + (33.3 − 57.8i)25-s + 10.5·29-s + (48.2 + 27.8i)31-s + (37.5 + 55.5i)35-s + (12.2 + 21.1i)37-s − 48.7i·41-s − 18.7·43-s + (10.4 − 6.00i)47-s + ⋯ |
L(s) = 1 | + (1.65 − 0.958i)5-s + (0.0714 + 0.997i)7-s + (0.208 − 0.361i)11-s − 0.603i·13-s + (0.976 + 0.563i)17-s + (−0.747 + 0.431i)19-s + (−0.521 − 0.903i)23-s + (1.33 − 2.31i)25-s + 0.365·29-s + (1.55 + 0.899i)31-s + (1.07 + 1.58i)35-s + (0.329 + 0.571i)37-s − 1.18i·41-s − 0.436·43-s + (0.221 − 0.127i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.07705 - 0.340907i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.07705 - 0.340907i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 6.98i)T \) |
good | 5 | \( 1 + (-8.29 + 4.79i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-2.29 + 3.97i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + 7.84iT - 169T^{2} \) |
| 17 | \( 1 + (-16.5 - 9.58i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (14.2 - 8.20i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (12 + 20.7i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 10.5T + 841T^{2} \) |
| 31 | \( 1 + (-48.2 - 27.8i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-12.2 - 21.1i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + 48.7iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 18.7T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-10.4 + 6.00i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (18.7 - 32.3i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (54.7 + 31.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (96.3 - 55.6i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (31.9 - 55.3i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 21.5T + 5.04e3T^{2} \) |
| 73 | \( 1 + (53.5 + 30.9i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-1.90 - 3.30i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 100. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (85.7 - 49.5i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 63.5iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.24077420808101107865011671036, −10.49638907712498876768114615572, −9.887726122683087931206827117344, −8.780659052264115758423769790370, −8.289534559162650752027813658698, −6.25313098623726921985992720796, −5.78011661490837274312164950862, −4.71872780612661998229777532749, −2.70870833627045664897892853853, −1.40172365567159374842191594933,
1.61406177302383219656971642314, 2.98542782511905812272260297336, 4.57835897958164650412157643913, 5.99436355303547873342819732713, 6.73285556157010210341119547796, 7.72250732824751483141682994967, 9.403717536230121545184670235075, 9.923492804322559799728657039164, 10.71619174864060656341652841991, 11.70892584585634166716459092278