L(s) = 1 | + (1.88 − 2.11i)2-s + (−0.909 − 7.94i)4-s + 21.8i·5-s − 7i·7-s + (−18.4 − 13.0i)8-s + (46.1 + 41.1i)10-s − 66.1·11-s − 61.5·13-s + (−14.7 − 13.1i)14-s + (−62.3 + 14.4i)16-s + 11.7i·17-s − 87.9i·19-s + (173. − 19.8i)20-s + (−124. + 139. i)22-s + 13.2·23-s + ⋯ |
L(s) = 1 | + (0.665 − 0.746i)2-s + (−0.113 − 0.993i)4-s + 1.95i·5-s − 0.377i·7-s + (−0.817 − 0.576i)8-s + (1.45 + 1.30i)10-s − 1.81·11-s − 1.31·13-s + (−0.282 − 0.251i)14-s + (−0.974 + 0.225i)16-s + 0.167i·17-s − 1.06i·19-s + (1.94 − 0.222i)20-s + (−1.20 + 1.35i)22-s + 0.119·23-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(−0.666−0.745i)Λ(4−s)
Λ(s)=(=(252s/2ΓC(s+3/2)L(s)(−0.666−0.745i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
−0.666−0.745i
|
Analytic conductor: |
14.8684 |
Root analytic conductor: |
3.85596 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :3/2), −0.666−0.745i)
|
Particular Values
L(2) |
≈ |
0.3404608460 |
L(21) |
≈ |
0.3404608460 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.88+2.11i)T |
| 3 | 1 |
| 7 | 1+7iT |
good | 5 | 1−21.8iT−125T2 |
| 11 | 1+66.1T+1.33e3T2 |
| 13 | 1+61.5T+2.19e3T2 |
| 17 | 1−11.7iT−4.91e3T2 |
| 19 | 1+87.9iT−6.85e3T2 |
| 23 | 1−13.2T+1.21e4T2 |
| 29 | 1+7.53iT−2.43e4T2 |
| 31 | 1−45.1iT−2.97e4T2 |
| 37 | 1−207.T+5.06e4T2 |
| 41 | 1−172.iT−6.89e4T2 |
| 43 | 1−331.iT−7.95e4T2 |
| 47 | 1−436.T+1.03e5T2 |
| 53 | 1−282.iT−1.48e5T2 |
| 59 | 1−553.T+2.05e5T2 |
| 61 | 1+262.T+2.26e5T2 |
| 67 | 1−89.8iT−3.00e5T2 |
| 71 | 1+891.T+3.57e5T2 |
| 73 | 1+506.T+3.89e5T2 |
| 79 | 1+836.iT−4.93e5T2 |
| 83 | 1+114.T+5.71e5T2 |
| 89 | 1−162.iT−7.04e5T2 |
| 97 | 1+1.05e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.76449443404940317943011568741, −10.86919758774321137399942166954, −10.41207204312902088108037994370, −9.640247144248555948136589237036, −7.67884293894270456633856474014, −6.93710035470479005338524637818, −5.75182809248377210820779995854, −4.51070108107426160528074439583, −2.92459240640868214941759809736, −2.52063851231095441804275411816,
0.097213382828791341623580477369, 2.39380043906675767039569567797, 4.23359262839044893939915801818, 5.24431923516112754360711505211, 5.59519442804877853441623718517, 7.49075484420588953575666994591, 8.139184812939871322125595882609, 9.015291516746877123049740864654, 10.07777230356818397390368593218, 11.81459841283539351300633986002