L(s) = 1 | + (1.88 − 2.11i)2-s + (−0.909 − 7.94i)4-s + 21.8i·5-s − 7i·7-s + (−18.4 − 13.0i)8-s + (46.1 + 41.1i)10-s − 66.1·11-s − 61.5·13-s + (−14.7 − 13.1i)14-s + (−62.3 + 14.4i)16-s + 11.7i·17-s − 87.9i·19-s + (173. − 19.8i)20-s + (−124. + 139. i)22-s + 13.2·23-s + ⋯ |
L(s) = 1 | + (0.665 − 0.746i)2-s + (−0.113 − 0.993i)4-s + 1.95i·5-s − 0.377i·7-s + (−0.817 − 0.576i)8-s + (1.45 + 1.30i)10-s − 1.81·11-s − 1.31·13-s + (−0.282 − 0.251i)14-s + (−0.974 + 0.225i)16-s + 0.167i·17-s − 1.06i·19-s + (1.94 − 0.222i)20-s + (−1.20 + 1.35i)22-s + 0.119·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.666 - 0.745i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.666 - 0.745i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.3404608460\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3404608460\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.88 + 2.11i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + 7iT \) |
good | 5 | \( 1 - 21.8iT - 125T^{2} \) |
| 11 | \( 1 + 66.1T + 1.33e3T^{2} \) |
| 13 | \( 1 + 61.5T + 2.19e3T^{2} \) |
| 17 | \( 1 - 11.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 87.9iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 13.2T + 1.21e4T^{2} \) |
| 29 | \( 1 + 7.53iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 45.1iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 207.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 172. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 331. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 436.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 282. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 553.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 262.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 89.8iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 891.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 506.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 836. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 114.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 162. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.05e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.76449443404940317943011568741, −10.86919758774321137399942166954, −10.41207204312902088108037994370, −9.640247144248555948136589237036, −7.67884293894270456633856474014, −6.93710035470479005338524637818, −5.75182809248377210820779995854, −4.51070108107426160528074439583, −2.92459240640868214941759809736, −2.52063851231095441804275411816,
0.097213382828791341623580477369, 2.39380043906675767039569567797, 4.23359262839044893939915801818, 5.24431923516112754360711505211, 5.59519442804877853441623718517, 7.49075484420588953575666994591, 8.139184812939871322125595882609, 9.015291516746877123049740864654, 10.07777230356818397390368593218, 11.81459841283539351300633986002