L(s) = 1 | + (39.3 − 68.1i)5-s + (−100. − 81.7i)7-s + (345. + 598. i)11-s + 818.·13-s + (554. + 960. i)17-s + (286. − 496. i)19-s + (1.25e3 − 2.18e3i)23-s + (−1.53e3 − 2.65e3i)25-s + 3.25e3·29-s + (−5.05e3 − 8.76e3i)31-s + (−9.52e3 + 3.63e3i)35-s + (−2.43e3 + 4.21e3i)37-s + 1.30e4·41-s − 9.30e3·43-s + (6.45e3 − 1.11e4i)47-s + ⋯ |
L(s) = 1 | + (0.703 − 1.21i)5-s + (−0.776 − 0.630i)7-s + (0.861 + 1.49i)11-s + 1.34·13-s + (0.465 + 0.806i)17-s + (0.182 − 0.315i)19-s + (0.496 − 0.859i)23-s + (−0.490 − 0.849i)25-s + 0.719·29-s + (−0.945 − 1.63i)31-s + (−1.31 + 0.502i)35-s + (−0.292 + 0.506i)37-s + 1.21·41-s − 0.767·43-s + (0.426 − 0.738i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.415 + 0.909i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.415 + 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.386432625\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.386432625\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (100. + 81.7i)T \) |
good | 5 | \( 1 + (-39.3 + 68.1i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-345. - 598. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 818.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-554. - 960. i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-286. + 496. i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-1.25e3 + 2.18e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 3.25e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (5.05e3 + 8.76e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (2.43e3 - 4.21e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.30e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 9.30e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-6.45e3 + 1.11e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (9.77e3 + 1.69e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.25e4 + 2.17e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.56e4 + 2.71e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.79e4 + 4.84e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 2.05e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-3.38e4 - 5.85e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (7.03e3 - 1.21e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 7.71e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-160. + 277. i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 1.12e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90368383188837416111849991405, −9.798839583721829296705283508013, −9.275095535148949458221282211382, −8.229222368643994247372610068220, −6.85594497469227791264481988558, −5.99793395320257582284441348414, −4.68624483818697190503454745326, −3.74032992166119261071068876800, −1.81624284247605151347362328761, −0.797144217960365651707493987760,
1.20334725628650198460127730390, 2.94167917997169344042337746507, 3.49225454350231285716834257931, 5.69348724733628945330041042892, 6.18934049461295855798113830056, 7.14590706211169204850096361106, 8.710756197050332085817890656746, 9.356806169626800297242103306230, 10.53606112551797535715733134737, 11.19385779710262615470566224633