L(s) = 1 | + (39.3 − 68.1i)5-s + (−100. − 81.7i)7-s + (345. + 598. i)11-s + 818.·13-s + (554. + 960. i)17-s + (286. − 496. i)19-s + (1.25e3 − 2.18e3i)23-s + (−1.53e3 − 2.65e3i)25-s + 3.25e3·29-s + (−5.05e3 − 8.76e3i)31-s + (−9.52e3 + 3.63e3i)35-s + (−2.43e3 + 4.21e3i)37-s + 1.30e4·41-s − 9.30e3·43-s + (6.45e3 − 1.11e4i)47-s + ⋯ |
L(s) = 1 | + (0.703 − 1.21i)5-s + (−0.776 − 0.630i)7-s + (0.861 + 1.49i)11-s + 1.34·13-s + (0.465 + 0.806i)17-s + (0.182 − 0.315i)19-s + (0.496 − 0.859i)23-s + (−0.490 − 0.849i)25-s + 0.719·29-s + (−0.945 − 1.63i)31-s + (−1.31 + 0.502i)35-s + (−0.292 + 0.506i)37-s + 1.21·41-s − 0.767·43-s + (0.426 − 0.738i)47-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.415+0.909i)Λ(6−s)
Λ(s)=(=(252s/2ΓC(s+5/2)L(s)(0.415+0.909i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.415+0.909i
|
Analytic conductor: |
40.4167 |
Root analytic conductor: |
6.35741 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :5/2), 0.415+0.909i)
|
Particular Values
L(3) |
≈ |
2.386432625 |
L(21) |
≈ |
2.386432625 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(100.+81.7i)T |
good | 5 | 1+(−39.3+68.1i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−345.−598.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−818.T+3.71e5T2 |
| 17 | 1+(−554.−960.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−286.+496.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−1.25e3+2.18e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−3.25e3T+2.05e7T2 |
| 31 | 1+(5.05e3+8.76e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(2.43e3−4.21e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−1.30e4T+1.15e8T2 |
| 43 | 1+9.30e3T+1.47e8T2 |
| 47 | 1+(−6.45e3+1.11e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(9.77e3+1.69e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.25e4+2.17e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−1.56e4+2.71e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(2.79e4+4.84e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+2.05e4T+1.80e9T2 |
| 73 | 1+(−3.38e4−5.85e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(7.03e3−1.21e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−7.71e4T+3.93e9T2 |
| 89 | 1+(−160.+277.i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+1.12e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90368383188837416111849991405, −9.798839583721829296705283508013, −9.275095535148949458221282211382, −8.229222368643994247372610068220, −6.85594497469227791264481988558, −5.99793395320257582284441348414, −4.68624483818697190503454745326, −3.74032992166119261071068876800, −1.81624284247605151347362328761, −0.797144217960365651707493987760,
1.20334725628650198460127730390, 2.94167917997169344042337746507, 3.49225454350231285716834257931, 5.69348724733628945330041042892, 6.18934049461295855798113830056, 7.14590706211169204850096361106, 8.710756197050332085817890656746, 9.356806169626800297242103306230, 10.53606112551797535715733134737, 11.19385779710262615470566224633