L(s) = 1 | − 264·5-s + 686·7-s + 4.98e3·11-s − 1.01e4·13-s − 1.78e4·17-s + 6.25e3·19-s − 1.40e4·23-s + 2.73e4·25-s − 2.43e5·29-s + 4.70e5·31-s − 1.81e5·35-s + 3.11e5·37-s − 9.19e5·41-s − 1.12e5·43-s + 1.02e5·47-s + 3.52e5·49-s − 2.72e6·53-s − 1.31e6·55-s + 1.90e4·59-s − 9.25e5·61-s + 2.67e6·65-s − 2.05e6·67-s + 8.69e5·71-s + 3.50e6·73-s + 3.41e6·77-s − 6.64e6·79-s − 7.85e6·83-s + ⋯ |
L(s) = 1 | − 0.944·5-s + 0.755·7-s + 1.12·11-s − 1.28·13-s − 0.880·17-s + 0.209·19-s − 0.240·23-s + 0.350·25-s − 1.85·29-s + 2.83·31-s − 0.713·35-s + 1.00·37-s − 2.08·41-s − 0.216·43-s + 0.143·47-s + 3/7·49-s − 2.50·53-s − 1.06·55-s + 0.0120·59-s − 0.521·61-s + 1.21·65-s − 0.834·67-s + 0.288·71-s + 1.05·73-s + 0.852·77-s − 1.51·79-s − 1.50·83-s + ⋯ |
Λ(s)=(=(63504s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(63504s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
63504
= 24⋅34⋅72
|
Sign: |
1
|
Analytic conductor: |
6197.00 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 63504, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | C1 | (1−p3T)2 |
good | 5 | D4 | 1+264T+8462pT2+264p7T3+p14T4 |
| 11 | D4 | 1−4980T+38737606T2−4980p7T3+p14T4 |
| 13 | D4 | 1+10148T+75576846T2+10148p7T3+p14T4 |
| 17 | D4 | 1+17832T+345159502T2+17832p7T3+p14T4 |
| 19 | D4 | 1−6256T+1754965926T2−6256p7T3+p14T4 |
| 23 | D4 | 1+14052T+6233591566T2+14052p7T3+p14T4 |
| 29 | D4 | 1+243588T+49005121054T2+243588p7T3+p14T4 |
| 31 | D4 | 1−470824T+110401476030T2−470824p7T3+p14T4 |
| 37 | D4 | 1−311116T+134140188030T2−311116p7T3+p14T4 |
| 41 | D4 | 1+919248T+579002453902T2+919248p7T3+p14T4 |
| 43 | D4 | 1+112616T+296638211478T2+112616p7T3+p14T4 |
| 47 | D4 | 1−102456T+463813338910T2−102456p7T3+p14T4 |
| 53 | D4 | 1+2720028T+3726830950846T2+2720028p7T3+p14T4 |
| 59 | D4 | 1−19008T−1663332768746T2−19008p7T3+p14T4 |
| 61 | D4 | 1+925148T+2505443574174T2+925148p7T3+p14T4 |
| 67 | D4 | 1+2053424T+3053533142214T2+2053424p7T3+p14T4 |
| 71 | D4 | 1−869508T+14567098422382T2−869508p7T3+p14T4 |
| 73 | D4 | 1−3505228T+11289516695814T2−3505228p7T3+p14T4 |
| 79 | D4 | 1+6640856T+37612376152158T2+6640856p7T3+p14T4 |
| 83 | D4 | 1+7856760T+50010766932550T2+7856760p7T3+p14T4 |
| 89 | D4 | 1−9330384T+109971781045486T2−9330384p7T3+p14T4 |
| 97 | D4 | 1+2220212T+72228119801046T2+2220212p7T3+p14T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57526851572705075479432081697, −10.09044807573988639224395868718, −9.497938331525630254815875111195, −9.202171084692448943749368721434, −8.495096268585817997387706021945, −8.071878988251383391394120417095, −7.67721206045429886701212209214, −7.19742349634444734554011499595, −6.42100940558754194034163469971, −6.35661771896507738405290366689, −5.14765097337015763652225361744, −4.93954190247693560846597331913, −4.17244927374621037037280666814, −3.99813506580270940881136839651, −3.03444279862126322902583779027, −2.51020183650228963671319030700, −1.61919959239364366267299229392, −1.19770680018989848264435622719, 0, 0,
1.19770680018989848264435622719, 1.61919959239364366267299229392, 2.51020183650228963671319030700, 3.03444279862126322902583779027, 3.99813506580270940881136839651, 4.17244927374621037037280666814, 4.93954190247693560846597331913, 5.14765097337015763652225361744, 6.35661771896507738405290366689, 6.42100940558754194034163469971, 7.19742349634444734554011499595, 7.67721206045429886701212209214, 8.071878988251383391394120417095, 8.495096268585817997387706021945, 9.202171084692448943749368721434, 9.497938331525630254815875111195, 10.09044807573988639224395868718, 10.57526851572705075479432081697