L(s) = 1 | − 524.·5-s + (423. − 802. i)7-s − 4.37e3i·11-s − 913. i·13-s − 3.44e4·17-s − 2.34e3i·19-s − 8.24e4i·23-s + 1.96e5·25-s − 2.26e5i·29-s − 1.42e5i·31-s + (−2.21e5 + 4.20e5i)35-s + 1.95e5·37-s + 3.77e5·41-s − 3.85e5·43-s + 1.39e5·47-s + ⋯ |
L(s) = 1 | − 1.87·5-s + (0.466 − 0.884i)7-s − 0.991i·11-s − 0.115i·13-s − 1.70·17-s − 0.0784i·19-s − 1.41i·23-s + 2.51·25-s − 1.72i·29-s − 0.858i·31-s + (−0.874 + 1.65i)35-s + 0.635·37-s + 0.855·41-s − 0.739·43-s + 0.196·47-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(−0.452−0.891i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(−0.452−0.891i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
−0.452−0.891i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), −0.452−0.891i)
|
Particular Values
L(4) |
≈ |
0.2294752047 |
L(21) |
≈ |
0.2294752047 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−423.+802.i)T |
good | 5 | 1+524.T+7.81e4T2 |
| 11 | 1+4.37e3iT−1.94e7T2 |
| 13 | 1+913.iT−6.27e7T2 |
| 17 | 1+3.44e4T+4.10e8T2 |
| 19 | 1+2.34e3iT−8.93e8T2 |
| 23 | 1+8.24e4iT−3.40e9T2 |
| 29 | 1+2.26e5iT−1.72e10T2 |
| 31 | 1+1.42e5iT−2.75e10T2 |
| 37 | 1−1.95e5T+9.49e10T2 |
| 41 | 1−3.77e5T+1.94e11T2 |
| 43 | 1+3.85e5T+2.71e11T2 |
| 47 | 1−1.39e5T+5.06e11T2 |
| 53 | 1−1.17e6iT−1.17e12T2 |
| 59 | 1+1.12e6T+2.48e12T2 |
| 61 | 1−2.34e6iT−3.14e12T2 |
| 67 | 1+3.98e6T+6.06e12T2 |
| 71 | 1−1.47e6iT−9.09e12T2 |
| 73 | 1+5.03e5iT−1.10e13T2 |
| 79 | 1−2.17e6T+1.92e13T2 |
| 83 | 1+6.61e6T+2.71e13T2 |
| 89 | 1+2.89e6T+4.42e13T2 |
| 97 | 1+1.26e7iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52188214093100618963089956257, −8.853610756580405001842778324827, −8.112225180139344368251681539883, −7.38392547790022344080859263414, −6.29199795793240571797876321015, −4.41477274177139218009217193164, −4.15273778258869236701836497078, −2.73608071941221802311330480808, −0.74039702956566711316416782765, −0.079482422362205239951931325900,
1.66587912471335502388619566248, 3.11685378132650504650180558273, 4.30428850204951432325551941047, 5.06337944965587269155087616793, 6.76614628298472115063137972867, 7.56165628172861858570162205067, 8.498174078304500130371471666739, 9.259593725824863707673615326742, 10.85467909924778245357848287143, 11.46406058447157839804725353773