Properties

Label 2-252-21.20-c7-0-3
Degree $2$
Conductor $252$
Sign $-0.558 - 0.829i$
Analytic cond. $78.7210$
Root an. cond. $8.87248$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 438.·5-s + (−907. − 20.5i)7-s − 7.41e3i·11-s + 2.70e3i·13-s − 3.34e4·17-s + 4.84e4i·19-s − 4.66e4i·23-s + 1.14e5·25-s + 1.59e5i·29-s + 2.14e5i·31-s + (−3.97e5 − 9.02e3i)35-s − 3.94e5·37-s + 1.57e5·41-s − 6.53e5·43-s + 9.95e5·47-s + ⋯
L(s)  = 1  + 1.56·5-s + (−0.999 − 0.0226i)7-s − 1.67i·11-s + 0.341i·13-s − 1.65·17-s + 1.62i·19-s − 0.799i·23-s + 1.45·25-s + 1.21i·29-s + 1.29i·31-s + (−1.56 − 0.0355i)35-s − 1.27·37-s + 0.357·41-s − 1.25·43-s + 1.39·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $-0.558 - 0.829i$
Analytic conductor: \(78.7210\)
Root analytic conductor: \(8.87248\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{252} (125, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :7/2),\ -0.558 - 0.829i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.9608030988\)
\(L(\frac12)\) \(\approx\) \(0.9608030988\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (907. + 20.5i)T \)
good5 \( 1 - 438.T + 7.81e4T^{2} \)
11 \( 1 + 7.41e3iT - 1.94e7T^{2} \)
13 \( 1 - 2.70e3iT - 6.27e7T^{2} \)
17 \( 1 + 3.34e4T + 4.10e8T^{2} \)
19 \( 1 - 4.84e4iT - 8.93e8T^{2} \)
23 \( 1 + 4.66e4iT - 3.40e9T^{2} \)
29 \( 1 - 1.59e5iT - 1.72e10T^{2} \)
31 \( 1 - 2.14e5iT - 2.75e10T^{2} \)
37 \( 1 + 3.94e5T + 9.49e10T^{2} \)
41 \( 1 - 1.57e5T + 1.94e11T^{2} \)
43 \( 1 + 6.53e5T + 2.71e11T^{2} \)
47 \( 1 - 9.95e5T + 5.06e11T^{2} \)
53 \( 1 - 9.18e5iT - 1.17e12T^{2} \)
59 \( 1 - 4.26e5T + 2.48e12T^{2} \)
61 \( 1 - 4.09e5iT - 3.14e12T^{2} \)
67 \( 1 - 6.18e5T + 6.06e12T^{2} \)
71 \( 1 + 3.96e6iT - 9.09e12T^{2} \)
73 \( 1 - 3.84e6iT - 1.10e13T^{2} \)
79 \( 1 + 1.41e6T + 1.92e13T^{2} \)
83 \( 1 - 3.32e6T + 2.71e13T^{2} \)
89 \( 1 + 1.18e7T + 4.42e13T^{2} \)
97 \( 1 - 1.26e7iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75649904581888820210865354631, −10.29590912870465145054754325396, −9.085129835687879166528814431339, −8.637232692106656838919730366963, −6.75051752132145359754431135235, −6.19580213740590127192137699882, −5.30987707100000370851901280260, −3.63887114526902902351473528636, −2.53259645265121289728780573518, −1.31611467938779697984593686586, 0.20154120910808619819896072550, 1.94212912626462876108530861554, 2.59298238727386906038897372949, 4.33655428389677930146089291116, 5.44893592809211345515949391257, 6.53081491178769414621409027345, 7.14758627147662990054967178536, 8.913315346341781743805726879095, 9.630629580802005690957911621525, 10.11683207545435088339161141081

Graph of the $Z$-function along the critical line