L(s) = 1 | + 438.·5-s + (−907. − 20.5i)7-s − 7.41e3i·11-s + 2.70e3i·13-s − 3.34e4·17-s + 4.84e4i·19-s − 4.66e4i·23-s + 1.14e5·25-s + 1.59e5i·29-s + 2.14e5i·31-s + (−3.97e5 − 9.02e3i)35-s − 3.94e5·37-s + 1.57e5·41-s − 6.53e5·43-s + 9.95e5·47-s + ⋯ |
L(s) = 1 | + 1.56·5-s + (−0.999 − 0.0226i)7-s − 1.67i·11-s + 0.341i·13-s − 1.65·17-s + 1.62i·19-s − 0.799i·23-s + 1.45·25-s + 1.21i·29-s + 1.29i·31-s + (−1.56 − 0.0355i)35-s − 1.27·37-s + 0.357·41-s − 1.25·43-s + 1.39·47-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(−0.558−0.829i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(−0.558−0.829i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
−0.558−0.829i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), −0.558−0.829i)
|
Particular Values
L(4) |
≈ |
0.9608030988 |
L(21) |
≈ |
0.9608030988 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(907.+20.5i)T |
good | 5 | 1−438.T+7.81e4T2 |
| 11 | 1+7.41e3iT−1.94e7T2 |
| 13 | 1−2.70e3iT−6.27e7T2 |
| 17 | 1+3.34e4T+4.10e8T2 |
| 19 | 1−4.84e4iT−8.93e8T2 |
| 23 | 1+4.66e4iT−3.40e9T2 |
| 29 | 1−1.59e5iT−1.72e10T2 |
| 31 | 1−2.14e5iT−2.75e10T2 |
| 37 | 1+3.94e5T+9.49e10T2 |
| 41 | 1−1.57e5T+1.94e11T2 |
| 43 | 1+6.53e5T+2.71e11T2 |
| 47 | 1−9.95e5T+5.06e11T2 |
| 53 | 1−9.18e5iT−1.17e12T2 |
| 59 | 1−4.26e5T+2.48e12T2 |
| 61 | 1−4.09e5iT−3.14e12T2 |
| 67 | 1−6.18e5T+6.06e12T2 |
| 71 | 1+3.96e6iT−9.09e12T2 |
| 73 | 1−3.84e6iT−1.10e13T2 |
| 79 | 1+1.41e6T+1.92e13T2 |
| 83 | 1−3.32e6T+2.71e13T2 |
| 89 | 1+1.18e7T+4.42e13T2 |
| 97 | 1−1.26e7iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75649904581888820210865354631, −10.29590912870465145054754325396, −9.085129835687879166528814431339, −8.637232692106656838919730366963, −6.75051752132145359754431135235, −6.19580213740590127192137699882, −5.30987707100000370851901280260, −3.63887114526902902351473528636, −2.53259645265121289728780573518, −1.31611467938779697984593686586,
0.20154120910808619819896072550, 1.94212912626462876108530861554, 2.59298238727386906038897372949, 4.33655428389677930146089291116, 5.44893592809211345515949391257, 6.53081491178769414621409027345, 7.14758627147662990054967178536, 8.913315346341781743805726879095, 9.630629580802005690957911621525, 10.11683207545435088339161141081