L(s) = 1 | + 438.·5-s + (−907. − 20.5i)7-s − 7.41e3i·11-s + 2.70e3i·13-s − 3.34e4·17-s + 4.84e4i·19-s − 4.66e4i·23-s + 1.14e5·25-s + 1.59e5i·29-s + 2.14e5i·31-s + (−3.97e5 − 9.02e3i)35-s − 3.94e5·37-s + 1.57e5·41-s − 6.53e5·43-s + 9.95e5·47-s + ⋯ |
L(s) = 1 | + 1.56·5-s + (−0.999 − 0.0226i)7-s − 1.67i·11-s + 0.341i·13-s − 1.65·17-s + 1.62i·19-s − 0.799i·23-s + 1.45·25-s + 1.21i·29-s + 1.29i·31-s + (−1.56 − 0.0355i)35-s − 1.27·37-s + 0.357·41-s − 1.25·43-s + 1.39·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.9608030988\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9608030988\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (907. + 20.5i)T \) |
good | 5 | \( 1 - 438.T + 7.81e4T^{2} \) |
| 11 | \( 1 + 7.41e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 - 2.70e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 3.34e4T + 4.10e8T^{2} \) |
| 19 | \( 1 - 4.84e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 4.66e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 - 1.59e5iT - 1.72e10T^{2} \) |
| 31 | \( 1 - 2.14e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 + 3.94e5T + 9.49e10T^{2} \) |
| 41 | \( 1 - 1.57e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 6.53e5T + 2.71e11T^{2} \) |
| 47 | \( 1 - 9.95e5T + 5.06e11T^{2} \) |
| 53 | \( 1 - 9.18e5iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 4.26e5T + 2.48e12T^{2} \) |
| 61 | \( 1 - 4.09e5iT - 3.14e12T^{2} \) |
| 67 | \( 1 - 6.18e5T + 6.06e12T^{2} \) |
| 71 | \( 1 + 3.96e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 - 3.84e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 1.41e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 3.32e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + 1.18e7T + 4.42e13T^{2} \) |
| 97 | \( 1 - 1.26e7iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75649904581888820210865354631, −10.29590912870465145054754325396, −9.085129835687879166528814431339, −8.637232692106656838919730366963, −6.75051752132145359754431135235, −6.19580213740590127192137699882, −5.30987707100000370851901280260, −3.63887114526902902351473528636, −2.53259645265121289728780573518, −1.31611467938779697984593686586,
0.20154120910808619819896072550, 1.94212912626462876108530861554, 2.59298238727386906038897372949, 4.33655428389677930146089291116, 5.44893592809211345515949391257, 6.53081491178769414621409027345, 7.14758627147662990054967178536, 8.913315346341781743805726879095, 9.630629580802005690957911621525, 10.11683207545435088339161141081