L(s) = 1 | + (−6.63 + 46.2i)3-s + (117. − 203. i)5-s + (171.5 + 297. i)7-s + (−2.09e3 − 614. i)9-s + (1.30e3 + 2.25e3i)11-s + (3.24e3 − 5.61e3i)13-s + (8.65e3 + 6.80e3i)15-s − 1.28e4·17-s − 1.16e4·19-s + (−1.48e4 + 5.96e3i)21-s + (1.16e4 − 2.01e4i)23-s + (1.13e4 + 1.96e4i)25-s + (4.23e4 − 9.30e4i)27-s + (7.33e4 + 1.27e5i)29-s + (2.68e4 − 4.65e4i)31-s + ⋯ |
L(s) = 1 | + (−0.141 + 0.989i)3-s + (0.421 − 0.729i)5-s + (0.188 + 0.327i)7-s + (−0.959 − 0.280i)9-s + (0.295 + 0.511i)11-s + (0.409 − 0.709i)13-s + (0.662 + 0.520i)15-s − 0.634·17-s − 0.389·19-s + (−0.350 + 0.140i)21-s + (0.199 − 0.345i)23-s + (0.145 + 0.251i)25-s + (0.414 − 0.910i)27-s + (0.558 + 0.967i)29-s + (0.161 − 0.280i)31-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.915−0.401i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(0.915−0.401i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.915−0.401i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(85,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), 0.915−0.401i)
|
Particular Values
L(4) |
≈ |
2.157865800 |
L(21) |
≈ |
2.157865800 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(6.63−46.2i)T |
| 7 | 1+(−171.5−297.i)T |
good | 5 | 1+(−117.+203.i)T+(−3.90e4−6.76e4i)T2 |
| 11 | 1+(−1.30e3−2.25e3i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+(−3.24e3+5.61e3i)T+(−3.13e7−5.43e7i)T2 |
| 17 | 1+1.28e4T+4.10e8T2 |
| 19 | 1+1.16e4T+8.93e8T2 |
| 23 | 1+(−1.16e4+2.01e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(−7.33e4−1.27e5i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+(−2.68e4+4.65e4i)T+(−1.37e10−2.38e10i)T2 |
| 37 | 1−3.93e5T+9.49e10T2 |
| 41 | 1+(−9.24e4+1.60e5i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+(4.49e5+7.79e5i)T+(−1.35e11+2.35e11i)T2 |
| 47 | 1+(6.77e5+1.17e6i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1−7.47e5T+1.17e12T2 |
| 59 | 1+(−5.98e5+1.03e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(−7.10e5−1.23e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(1.46e6−2.52e6i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1−5.67e6T+9.09e12T2 |
| 73 | 1−1.55e6T+1.10e13T2 |
| 79 | 1+(−9.67e5−1.67e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(−1.23e6−2.13e6i)T+(−1.35e13+2.35e13i)T2 |
| 89 | 1−4.49e5T+4.42e13T2 |
| 97 | 1+(−6.30e6−1.09e7i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73583759208090016035573508919, −9.892576005728651440662810467887, −8.939052818203683283865023473200, −8.367046021630539759924778041083, −6.69699384813969485270666744034, −5.50337305500845956240096476426, −4.81377876574247419762040249636, −3.67397868459114955936956321557, −2.24176748548304434723663098444, −0.71808875503342142716856725453,
0.797991261793430309902219993206, 1.95880943279229773755380300910, 3.04169021787171460023262833684, 4.56680087698500387586217558363, 6.22480850964127799260137143471, 6.48993139445808244939826914492, 7.70558063999804806556605446012, 8.630776341464710253073165916029, 9.808209437174723290848718453746, 11.10434367338407785928399401699