L(s) = 1 | + (−39.4 + 25.0i)3-s + (−137. + 238. i)5-s + (171.5 + 297. i)7-s + (928. − 1.98e3i)9-s + (1.72e3 + 2.99e3i)11-s + (1.83e3 − 3.17e3i)13-s + (−548. − 1.28e4i)15-s − 4.87e3·17-s − 4.01e4·19-s + (−1.42e4 − 7.42e3i)21-s + (−5.24e4 + 9.08e4i)23-s + (1.05e3 + 1.81e3i)25-s + (1.30e4 + 1.01e5i)27-s + (−1.59e4 − 2.76e4i)29-s + (−222. + 384. i)31-s + ⋯ |
L(s) = 1 | + (−0.843 + 0.536i)3-s + (−0.493 + 0.854i)5-s + (0.188 + 0.327i)7-s + (0.424 − 0.905i)9-s + (0.391 + 0.678i)11-s + (0.231 − 0.400i)13-s + (−0.0420 − 0.985i)15-s − 0.240·17-s − 1.34·19-s + (−0.335 − 0.174i)21-s + (−0.898 + 1.55i)23-s + (0.0134 + 0.0232i)25-s + (0.127 + 0.991i)27-s + (−0.121 − 0.210i)29-s + (−0.00133 + 0.00231i)31-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.256+0.966i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(0.256+0.966i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.256+0.966i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(85,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), 0.256+0.966i)
|
Particular Values
L(4) |
≈ |
0.07966933400 |
L(21) |
≈ |
0.07966933400 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(39.4−25.0i)T |
| 7 | 1+(−171.5−297.i)T |
good | 5 | 1+(137.−238.i)T+(−3.90e4−6.76e4i)T2 |
| 11 | 1+(−1.72e3−2.99e3i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+(−1.83e3+3.17e3i)T+(−3.13e7−5.43e7i)T2 |
| 17 | 1+4.87e3T+4.10e8T2 |
| 19 | 1+4.01e4T+8.93e8T2 |
| 23 | 1+(5.24e4−9.08e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(1.59e4+2.76e4i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+(222.−384.i)T+(−1.37e10−2.38e10i)T2 |
| 37 | 1+3.55e5T+9.49e10T2 |
| 41 | 1+(1.25e5−2.17e5i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+(6.08e4+1.05e5i)T+(−1.35e11+2.35e11i)T2 |
| 47 | 1+(1.61e5+2.78e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1−1.10e6T+1.17e12T2 |
| 59 | 1+(4.01e5−6.94e5i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(1.68e5+2.92e5i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(2.45e5−4.25e5i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1+2.10e5T+9.09e12T2 |
| 73 | 1+2.64e5T+1.10e13T2 |
| 79 | 1+(2.08e5+3.60e5i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(3.34e6+5.79e6i)T+(−1.35e13+2.35e13i)T2 |
| 89 | 1−6.64e6T+4.42e13T2 |
| 97 | 1+(5.90e6+1.02e7i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65702140395782018591922368924, −9.906055995298427208656207600057, −8.756756774853994531098556589116, −7.43972104191848646122202175651, −6.54331345192000885567566815772, −5.55056300704063466889326481925, −4.32490064651485380447348885323, −3.40092678268323969975506648788, −1.77172188107172607892893826015, −0.02742580741355789381062988460,
0.821811367684440986932150709961, 2.03034825360359359578204126497, 4.02287317812146503441470280682, 4.80150049107905909892487241282, 6.08196242511453800933177920286, 6.87802079321306946935173072094, 8.195583356507811150426030250695, 8.748825666049932859383291382380, 10.34611496972009407630972375352, 11.07514504255465566627734938443