L(s) = 1 | + (−161. + 279. i)5-s + (−882. + 210. i)7-s + (43.6 + 75.6i)11-s − 9.60e3·13-s + (−1.61e4 − 2.80e4i)17-s + (−477. + 826. i)19-s + (4.78e3 − 8.27e3i)23-s + (−1.29e4 − 2.24e4i)25-s − 2.10e5·29-s + (2.08e4 + 3.60e4i)31-s + (8.36e4 − 2.80e5i)35-s + (−1.39e4 + 2.42e4i)37-s + 2.96e5·41-s + 4.96e5·43-s + (−3.08e5 + 5.34e5i)47-s + ⋯ |
L(s) = 1 | + (−0.576 + 0.999i)5-s + (−0.972 + 0.231i)7-s + (0.00989 + 0.0171i)11-s − 1.21·13-s + (−0.799 − 1.38i)17-s + (−0.0159 + 0.0276i)19-s + (0.0819 − 0.141i)23-s + (−0.165 − 0.286i)25-s − 1.59·29-s + (0.125 + 0.217i)31-s + (0.329 − 1.10i)35-s + (−0.0454 + 0.0786i)37-s + 0.671·41-s + 0.951·43-s + (−0.433 + 0.750i)47-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.974+0.224i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(0.974+0.224i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.974+0.224i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), 0.974+0.224i)
|
Particular Values
L(4) |
≈ |
0.7390238894 |
L(21) |
≈ |
0.7390238894 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(882.−210.i)T |
good | 5 | 1+(161.−279.i)T+(−3.90e4−6.76e4i)T2 |
| 11 | 1+(−43.6−75.6i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+9.60e3T+6.27e7T2 |
| 17 | 1+(1.61e4+2.80e4i)T+(−2.05e8+3.55e8i)T2 |
| 19 | 1+(477.−826.i)T+(−4.46e8−7.74e8i)T2 |
| 23 | 1+(−4.78e3+8.27e3i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+2.10e5T+1.72e10T2 |
| 31 | 1+(−2.08e4−3.60e4i)T+(−1.37e10+2.38e10i)T2 |
| 37 | 1+(1.39e4−2.42e4i)T+(−4.74e10−8.22e10i)T2 |
| 41 | 1−2.96e5T+1.94e11T2 |
| 43 | 1−4.96e5T+2.71e11T2 |
| 47 | 1+(3.08e5−5.34e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+(−2.99e5−5.19e5i)T+(−5.87e11+1.01e12i)T2 |
| 59 | 1+(−1.20e6−2.08e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(5.39e5−9.34e5i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(1.37e6+2.37e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+2.21e6T+9.09e12T2 |
| 73 | 1+(−1.33e6−2.30e6i)T+(−5.52e12+9.56e12i)T2 |
| 79 | 1+(−1.44e6+2.50e6i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+3.60e6T+2.71e13T2 |
| 89 | 1+(−4.66e5+8.07e5i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1−1.21e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.82393456093027556845736392609, −9.762770946311741740387332219668, −9.039307733849699898011237798845, −7.40708834373099152771015067598, −7.06501737213909625970077115932, −5.82977140737949768784297445871, −4.45843800580939805678533071722, −3.16754878059358489046102373176, −2.42230629108170508282349946301, −0.31136013973892167230369183641,
0.55008896058878543023097529060, 2.10852900048182298097533728272, 3.64571675139886084670192580203, 4.52765910315232382230004733506, 5.74291686828240377826743588356, 6.93226322262324149877603523729, 7.936366282360208993011229512637, 8.956079319386969873990670471943, 9.743586596193758588435150465047, 10.81495923188686095418204021921