Properties

Label 2-252-7.2-c7-0-8
Degree $2$
Conductor $252$
Sign $0.974 + 0.224i$
Analytic cond. $78.7210$
Root an. cond. $8.87248$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−161. + 279. i)5-s + (−882. + 210. i)7-s + (43.6 + 75.6i)11-s − 9.60e3·13-s + (−1.61e4 − 2.80e4i)17-s + (−477. + 826. i)19-s + (4.78e3 − 8.27e3i)23-s + (−1.29e4 − 2.24e4i)25-s − 2.10e5·29-s + (2.08e4 + 3.60e4i)31-s + (8.36e4 − 2.80e5i)35-s + (−1.39e4 + 2.42e4i)37-s + 2.96e5·41-s + 4.96e5·43-s + (−3.08e5 + 5.34e5i)47-s + ⋯
L(s)  = 1  + (−0.576 + 0.999i)5-s + (−0.972 + 0.231i)7-s + (0.00989 + 0.0171i)11-s − 1.21·13-s + (−0.799 − 1.38i)17-s + (−0.0159 + 0.0276i)19-s + (0.0819 − 0.141i)23-s + (−0.165 − 0.286i)25-s − 1.59·29-s + (0.125 + 0.217i)31-s + (0.329 − 1.10i)35-s + (−0.0454 + 0.0786i)37-s + 0.671·41-s + 0.951·43-s + (−0.433 + 0.750i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 + 0.224i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.974 + 0.224i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $0.974 + 0.224i$
Analytic conductor: \(78.7210\)
Root analytic conductor: \(8.87248\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{252} (37, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :7/2),\ 0.974 + 0.224i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.7390238894\)
\(L(\frac12)\) \(\approx\) \(0.7390238894\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (882. - 210. i)T \)
good5 \( 1 + (161. - 279. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
11 \( 1 + (-43.6 - 75.6i)T + (-9.74e6 + 1.68e7i)T^{2} \)
13 \( 1 + 9.60e3T + 6.27e7T^{2} \)
17 \( 1 + (1.61e4 + 2.80e4i)T + (-2.05e8 + 3.55e8i)T^{2} \)
19 \( 1 + (477. - 826. i)T + (-4.46e8 - 7.74e8i)T^{2} \)
23 \( 1 + (-4.78e3 + 8.27e3i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + 2.10e5T + 1.72e10T^{2} \)
31 \( 1 + (-2.08e4 - 3.60e4i)T + (-1.37e10 + 2.38e10i)T^{2} \)
37 \( 1 + (1.39e4 - 2.42e4i)T + (-4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 - 2.96e5T + 1.94e11T^{2} \)
43 \( 1 - 4.96e5T + 2.71e11T^{2} \)
47 \( 1 + (3.08e5 - 5.34e5i)T + (-2.53e11 - 4.38e11i)T^{2} \)
53 \( 1 + (-2.99e5 - 5.19e5i)T + (-5.87e11 + 1.01e12i)T^{2} \)
59 \( 1 + (-1.20e6 - 2.08e6i)T + (-1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (5.39e5 - 9.34e5i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (1.37e6 + 2.37e6i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + 2.21e6T + 9.09e12T^{2} \)
73 \( 1 + (-1.33e6 - 2.30e6i)T + (-5.52e12 + 9.56e12i)T^{2} \)
79 \( 1 + (-1.44e6 + 2.50e6i)T + (-9.60e12 - 1.66e13i)T^{2} \)
83 \( 1 + 3.60e6T + 2.71e13T^{2} \)
89 \( 1 + (-4.66e5 + 8.07e5i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 - 1.21e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82393456093027556845736392609, −9.762770946311741740387332219668, −9.039307733849699898011237798845, −7.40708834373099152771015067598, −7.06501737213909625970077115932, −5.82977140737949768784297445871, −4.45843800580939805678533071722, −3.16754878059358489046102373176, −2.42230629108170508282349946301, −0.31136013973892167230369183641, 0.55008896058878543023097529060, 2.10852900048182298097533728272, 3.64571675139886084670192580203, 4.52765910315232382230004733506, 5.74291686828240377826743588356, 6.93226322262324149877603523729, 7.936366282360208993011229512637, 8.956079319386969873990670471943, 9.743586596193758588435150465047, 10.81495923188686095418204021921

Graph of the $Z$-function along the critical line