L(s) = 1 | + (−275. − 477. i)5-s + (877. − 230. i)7-s + (1.25e3 + 722. i)11-s + 1.24e4i·13-s + (8.65e3 − 1.49e4i)17-s + (−2.25e4 + 1.30e4i)19-s + (−6.79e4 + 3.92e4i)23-s + (−1.12e5 + 1.95e5i)25-s − 3.35e4i·29-s + (1.96e5 + 1.13e5i)31-s + (−3.52e5 − 3.55e5i)35-s + (−1.75e5 − 3.03e5i)37-s + 1.09e5·41-s − 1.10e5·43-s + (5.13e5 + 8.90e5i)47-s + ⋯ |
L(s) = 1 | + (−0.985 − 1.70i)5-s + (0.967 − 0.254i)7-s + (0.283 + 0.163i)11-s + 1.57i·13-s + (0.427 − 0.740i)17-s + (−0.754 + 0.435i)19-s + (−1.16 + 0.672i)23-s + (−1.44 + 2.50i)25-s − 0.255i·29-s + (1.18 + 0.683i)31-s + (−1.38 − 1.40i)35-s + (−0.568 − 0.984i)37-s + 0.248·41-s − 0.211·43-s + (0.722 + 1.25i)47-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.888−0.458i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(0.888−0.458i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.888−0.458i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), 0.888−0.458i)
|
Particular Values
L(4) |
≈ |
1.462484399 |
L(21) |
≈ |
1.462484399 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−877.+230.i)T |
good | 5 | 1+(275.+477.i)T+(−3.90e4+6.76e4i)T2 |
| 11 | 1+(−1.25e3−722.i)T+(9.74e6+1.68e7i)T2 |
| 13 | 1−1.24e4iT−6.27e7T2 |
| 17 | 1+(−8.65e3+1.49e4i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(2.25e4−1.30e4i)T+(4.46e8−7.74e8i)T2 |
| 23 | 1+(6.79e4−3.92e4i)T+(1.70e9−2.94e9i)T2 |
| 29 | 1+3.35e4iT−1.72e10T2 |
| 31 | 1+(−1.96e5−1.13e5i)T+(1.37e10+2.38e10i)T2 |
| 37 | 1+(1.75e5+3.03e5i)T+(−4.74e10+8.22e10i)T2 |
| 41 | 1−1.09e5T+1.94e11T2 |
| 43 | 1+1.10e5T+2.71e11T2 |
| 47 | 1+(−5.13e5−8.90e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1+(−8.68e5−5.01e5i)T+(5.87e11+1.01e12i)T2 |
| 59 | 1+(1.13e5−1.95e5i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(−3.40e5+1.96e5i)T+(1.57e12−2.72e12i)T2 |
| 67 | 1+(3.93e5−6.81e5i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1−2.32e6iT−9.09e12T2 |
| 73 | 1+(−1.33e6−7.71e5i)T+(5.52e12+9.56e12i)T2 |
| 79 | 1+(−3.43e6−5.95e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+6.19e6T+2.71e13T2 |
| 89 | 1+(4.21e6+7.29e6i)T+(−2.21e13+3.83e13i)T2 |
| 97 | 1−7.20e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.19520849858502517032775046567, −9.676752529181927530883175933515, −8.785454839525135595945938433133, −8.090799632316520467142286945360, −7.17289380611051265225240266463, −5.54883142114836322484415375681, −4.43117870047202521226013095372, −4.07220059943959991860344210315, −1.82327209820503143712834361654, −0.934087369537489235001450806867,
0.41950839292759119189691664231, 2.25189105018520391432076749621, 3.27658451381418353450624255398, 4.30529844128973499830518323978, 5.82761225807155728546668295170, 6.80352795388277502565551097492, 7.973706296411023390611856818983, 8.288845843152609582668395510009, 10.29162214787882992001608773720, 10.60363475328915229077830011532